10 resultados para Copenhagen (Denmark). Bildergalerie.

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identifying key marine megavertebrate habitats has become ever more important as concern increases regarding global fisheries bycatch and accelerated climate change. This will be aided by a greater understanding of the patterns and processes determining the spatiotemporal distribution of species of conservation concern. We identify probable foraging grounds for leatherback turtles in the NE Atlantic using monthly landscapes of gelatinous organism distribution constructed from Continuous Plankton Recorder Survey data. Using sightings data (n = 2013 records, 1954 to 2003) from 9 countries (UK, Ireland, France, Belgium, The Netherlands, Denmark, Germany, Norway and Sweden), we show sea surface temperatures of approximately 10 to 12 degree C most likely indicate the lower thermal threshold for accessible habitats during seasonal foraging migrations to high latitudes. Integrating maps of gelatinous plankton as a possible indicator of prey distribution with thermal tolerance parameters demonstrates the dynamic (spatial and temporal) nature of NE Atlantic foraging habitats. We highlight the importance of body size- related thermal constraints in structuring leatherback foraging populations and demonstrate a latitudinal gradient in body size (Bergmann's rule) where smaller animals are excluded from higher latitude foraging areas. We highlight the marine area of the European continental shelf edge as being both thermally accessible and prey rich, and therefore potentially supporting appreciable densities of foraging leatherbacks, with some suitable areas not yet extensively surveyed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems and the goods and services they provide for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario consistent with the Copenhagen Accord’s goal of a global temperature increase of less than 2°C—is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The atmosphere and ocean are two components of the Earth system that are essential for life, yet humankind is altering both. Contemporary climate change is now a well-identified problem: anthropogenic causes, disturbance in extreme events patterns, gradual environmental changes, widespread impacts on life and natural resources, and multiple threats to human societies all around the world. But part of the problem remains largely unknown outside the scientific community: significant changes are also occurring in the ocean, threatening life and its sustainability on Earth. This Policy Brief explains the significance of these changes in the ocean. It is based on a scientific paper recently published in Science (Gattuso et al., 2015), which synthesizes recent and future changes to the ocean and its ecosystems, as well as to the goods and services they provide to humans. Two contrasting CO2 emission scenarios are considered: the high emissions scenario (also known as “business-as-usual” and as the Representative Concentration Pathway 8.5, RCP8.5) and a stringent emissions scenario (RCP2.6) consistent with the Copenhagen Accord1 of keeping mean global temperature increase below 2°C in 2100.