6 resultados para Coordinated optimal dispatch

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequential alternation of extracellular digestion in the stomach and intracellular digestion in the diverticula appears widespread among bivalves. The present study documents some physiological consequences of such processes in Mytilus edulis L. collected during 1981 from Whitsand Bay, Cornwall, England. Pronounced temporal fluctuations in faecal deposition are described that relate, in terms of amplitude and period, to both sinusoidal rhythmicity established for ammonia excretion and changes in the morphology of digestive tubules. Although at least partially synchronised among replicate groups of mussels, these cycles bore no consistent relationship with exogenous influences. Hourly fluctuation in the net absorption efficiency for nitrogen, as evidenced by the mean percentage ±2 SE, measured over 24 h sampling periods, was considerable (16.0±53.7, 49.3±10.9 and 52.8±6.6 for mussels acclimated in March, June and October, respectively). This variation in absorption derived from an inverse relationship between the percentage nitrogen within faeces and the rate of faecal egestion. Accordingly, peaks of faecal deposition presumably represented the pulsed remnants of intracellular digestion. Co-ordinated rhythms of digestion, absorption and excretion were thus evident in M. edulis. These processes displayed seasonally dependent periodicities of approximately 8, 3 and 4 h in March, June and October, respectively. It was concluded that, at least for M. edulis, this previously unquantified rhythmicity of physiological processes warrants careful consideration during assays commonly undertaken in the complication of nutrient and energy budgets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While evidence for optimal random search patterns, known as Lévy walks, in empirical movement data is mounting for a growing list of taxa spanning motile cells to humans, there is still much debate concerning the theoretical generality of Lévy walk optimisation. Here, using a new and robust simulation environment, we investigate in the most detailed study to date (24×10(6) simulations) the foraging and search efficiencies of 2-D Lévy walks with a range of exponents, target resource distributions and several competing models. We find strong and comprehensive support for the predictions of the Lévy flight foraging hypothesis and in particular for the optimality of inverse square distributions of move step-lengths across a much broader range of resource densities and distributions than previously realised. Further support for the evolutionary advantage of Lévy walk movement patterns is provided by an investigation into the 'feast and famine' effect, with Lévy foragers in heterogeneous environments experiencing fewer long 'famines' than other types of searchers. Therefore overall, optimal Lévy foraging results in more predictable resources in unpredictable environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient searching is crucial for timely location of food and other resources. Recent studies show diverse living animals employ a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behaviour and the search strategies of extinct organisms. Here we show using simulations of self-avoiding trace fossil trails that randomly introduced strophotaxis (U-turns) – initiated by obstructions such as ¬¬¬self-trail avoidance or innate cueing – leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts optimal Lévy searches can emerge from simple behaviours observed in fossil trails. We then analysed fossilized trails of benthic marine organisms using a novel path analysis technique and find the first evidence of Lévy-like search strategies in extinct animals. Our results show that simple search behaviours of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterising mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest Lévy-like behaviour has been employed by foragers since at least the Eocene but may have a more ancient origin, which could explain recent widespread observations of such patterns among modern taxa.