3 resultados para Consensus by non-opposition

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information on non-native species (NNS) is often scattered among a multitude of sources, such as regional and national databases, peer-reviewed and grey literature, unpublished research projects, institutional datasets and with taxonomic experts. Here we report on the development of a database designed for the collation of information in Britain. The project involved working with volunteer experts to populate a database of NNS (hereafter called “the species register”). Each species occupies a row within the database with information on aspects of the species’ biology such as environment (marine, freshwater, terrestrial etc.), functional type (predator, parasite etc.), habitats occupied in the invaded range (using EUNIS classification), invasion pathways, establishment status in Britain and impacts. The information is delivered through the Great Britain Non-Native Species Information Portal hosted by the Non-Native Species Secretariat. By the end of 2011 there were 1958 established NNS in Britain. There has been a dramatic increase over time in the rate of NNS arriving in Britain and those becoming established. The majority of established NNS are higher plants (1,376 species). Insects are the next most numerous group (344 species) followed by non-insect invertebrates (158 species), vertebrates (50 species), algae (24 species) and lower plants (6 species). Inventories of NNS are seen as an essential tool in the management of biological invasions. The use of such lists is diverse and far-reaching. However, the increasing number of new arrivals highlights both the dynamic nature of invasions and the importance of updating NNS inventories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of elevated pCO(2)/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567A degrees N, 4.1277A degrees W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (a"broken vertical bar(calc) = 0.78, a"broken vertical bar(ara) = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO(2) can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO(2)-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gephyrocapsa oceanica is a cosmopolitan bloom-forming coccolithophore species belonging to the haptophyte order Isochrysidales and family Noëlaerhabdaceae. Exclusively pelagic, G. oceanica is commonly found in modern oceans and in fossil assemblages. Its sister species Emiliania huxleyi is known to possess a haplo-diplontic life cycle, the non-motile diploid coccolith-bearing cells alternating with haploid cells that are motile and covered by non-mineralized organic scales. Since the cytology and ultrastructure of other members of the Noëlaerhabdaceae has never been reported, it is not clear whether these features are common to the family. Here, we report on the ultrastructure of both the non-motile calcifying stage and the non-calcifying motile stage of G. oceanica. We found no significant ultrastructural differences between E. huxleyi and G. oceanica either in the calcifying diploid stage or the haploid phase. The similarities between these two morphospecies demonstrated a high degree of conservation of cytological features. We discuss the significance of these results in the light of the evolution of the Noelaerhabdaceae.