6 resultados para Cold Climate
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Structure and climate of the east North Atlantic are appraised within a framework of in situ measurement and altimeter remote sensing from 0 degree - 60 degree N. Long zonal expendable bathythermograph /conductivity-temperature-depth probe sections show repeating internal structure in the North Atlantic Ocean. Drogued buoys and subsurface floats give westward speeds for eddies and wavelike structure. Records from longterm current meter deployments give the periodicity of the repeating structure. Eddy and wave characteristics of period, size or wavelength, westward propagation speed, and mean currents are derived at 20 degree N, 26 degree N, 32.5 degree N, 36 degree N and 48 degree N from in situ measurements in the Atlantic Ocean. It is shown that ocean wave and eddy-like features measured in situ correlate with altimeter structure. Interior ocean wave crests or cold dome-like temperature structures are cyclonic and have negative surface altimeter anomalies; mesoscale internal wave troughs or warm structures are anticyclonic and have positive surface height anomalies. Along the Eastern Boundary, flows and temperature climate are examined in terms of sla and North Atlantic Oscillation (NAO) Index. Longterm changes in ocean climate and circulation are derived from sla data. It is shown that longterm changes from 1992 to 2002 in the North Atlantic Current and the Subtropical Gyre transport determined from sla data correlate with winter NAO Index such that maximum flow conditions occurred in 1995 and 2000. Minimum circulation conditions occurred between 1996-1998. Years of extreme negative winter NAO Index result in enhanced poleward flow along the Eastern Boundary and anomalous winter warming along the West European Continental Slope as was measured in 1990, 1996, 1998 and 2001.
Resumo:
Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0 degrees and 90 degrees W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2 degrees C per decade, and projections suggest that further widespread warming of 0.27 degrees to 1.08 degrees C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.
Resumo:
Light (20-450 μmol photons m-2 s-1), temperature (3-11°C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl
Resumo:
Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).
Resumo:
The English Channel is located at the biogeographical boundary between the northern Boreal and southern Lusitanian biozones and therefore represents an important area to study the effects of global warming on marine organisms. While the consequences of climatic change in the western English Channel have been relatively well documented for fish, plankton and inter-tidal benthic communities, data highlighting the same effects on the distribution of sub-littoral benthic organisms does, to date, not exist. The present study resurveyed a subset of sites originally surveyed from 1958 to 1959 along the UK coast of the English Channel. The main aims of this resurvey were to describe the present status of benthic communities and to investigate potential temporal changes, in particular distributional changes in western stenothermal ‘cold’ water and southern Lusitanian ‘warm’ water species. The increase in water temperature observed since the historic survey was predicted to have caused a contraction in the distribution of cold water species and an extension in the distribution of warm water species. The temporal comparison did not show any clear broad-scale distributional changes in benthic communities consistent with these predictions. Nevertheless, 2 warm water species, the sting winkle Ocenebra erinacea and the introduced American slipper limpet Crepidula fornicata, did show range extensions and increased occurrence, possibly related to climatic warming. Similarly, warm water species previously not recorded by the historic survey were found. The absence of broad-scale temporal differences in sub-tidal communities in response to climatic warming has been reported for other areas and may indicate that these communities respond far more slowly to environmental changes compared to plankton, fish and inter-tidal organisms.
Resumo:
The English Channel is located at the biogeographical boundary between the northern Boreal and southern Lusitanian biozones and therefore represents an important area to study the effects of global warming on marine organisms. While the consequences of climatic change in the western English Channel have been relatively well documented for fish, plankton and inter-tidal benthic communities, data highlighting the same effects on the distribution of sub-littoral benthic organisms does, to date, not exist. The present study resurveyed a subset of sites originally surveyed from 1958 to 1959 along the UK coast of the English Channel. The main aims of this resurvey were to describe the present status of benthic communities and to investigate potential temporal changes, in particular distributional changes in western stenothermal ‘cold’ water and southern Lusitanian ‘warm’ water species. The increase in water temperature observed since the historic survey was predicted to have caused a contraction in the distribution of cold water species and an extension in the distribution of warm water species. The temporal comparison did not show any clear broad-scale distributional changes in benthic communities consistent with these predictions. Nevertheless, 2 warm water species, the sting winkle Ocenebra erinacea and the introduced American slipper limpet Crepidula fornicata, did show range extensions and increased occurrence, possibly related to climatic warming. Similarly, warm water species previously not recorded by the historic survey were found. The absence of broad-scale temporal differences in sub-tidal communities in response to climatic warming has been reported for other areas and may indicate that these communities respond far more slowly to environmental changes compared to plankton, fish and inter-tidal organisms.