6 resultados para Coefficient of concordance

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The calorific, ash, carbon and nitrogen content, length and dry weight were determined for the hyperiid Parathemisto gaudichaudi (Guerin). Regression equations for all these variables were determined so that they can be estimated by calculation from measurements of length of the hyperiid. Mean values for total nitrogen and carbon were 7.79±0.85% and 36.80±4.18% of the dry weight, respectively. The carbon to calorific equivalent for P. gaudichaudi was 10.37 kcal g-1 carbon (9.13 kcal g-1 when corrected for nitrogen). The calorific value for ash-free adult P. gaudichaudi was 5.138 kcal g-1±1.309 (4.510 kcal g-1 when corrected for nitrogen). This large variation in the calorific content (coefficient of variation of 25.84%) can be accounted for largely by variation in the ash content (coefficient of variation of 21.84%). The calorific value determined for P. gaudichaudi is similar to that measured for other carnivorous crustaceans and adds support to the hypothesis that animals with high calorific content have a low fecundity and an energy-rich store which can be used as a buffer during unfavourable periods in their life.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The absorption spectra of phytoplankton in the visible domain hold implicit information on the phytoplankton community structure. Here we use this information to retrieve quantitative information on phytoplankton size structure by developing a novel method to compute the exponent of an assumed power-law for their particle-size spectrum. This quantity, in combination with total chlorophyll-a concentration, can be used to estimate the fractional concentration of chlorophyll in any arbitrarily-defined size class of phytoplankton. We further define and derive expressions for two distinct measures of cell size of mixed. populations, namely, the average spherical diameter of a bio-optically equivalent homogeneous population of cells of equal size, and the average equivalent spherical diameter of a population of cells that follow a power-law particle-size distribution. The method relies on measurements of two quantities of a phytoplankton sample: the concentration of chlorophyll-a, which is an operational index of phytoplankton biomass, and the total absorption coefficient of phytoplankton in the red peak of visible spectrum at 676 nm. A sensitivity analysis confirms that the relative errors in the estimates of the exponent of particle size spectra are reasonably low. The exponents of phytoplankton size spectra, estimated for a large set of in situ data from a variety of oceanic environments (similar to 2400 samples), are within a reasonable range; and the estimated fractions of chlorophyll in pico-, nano- and micro-phytoplankton are generally consistent with those obtained by an independent, indirect method based on diagnostic pigments determined using high-performance liquid chromatography. The estimates of cell size for in situ samples dominated by different phytoplankton types (diatoms, prymnesiophytes, Prochlorococcus, other cyanobacteria and green algae) yield nominal sizes consistent with the taxonomic classification. To estimate the same quantities from satellite-derived ocean-colour data, we combine our method with algorithms for obtaining inherent optical properties from remote sensing. The spatial distribution of the size-spectrum exponent and the chlorophyll fractions of pico-, nano- and micro-phytoplankton estimated from satellite remote sensing are in agreement with the current understanding of the biogeography of phytoplankton functional types in the global oceans. This study contributes to our understanding of the distribution and time evolution of phytoplankton size structure in the global oceans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most satellite models of production have been designed and calibrated for use in the open ocean. Coastal waters are optically more complex, and the use of chlorophyll a (chl a) as a first-order predictor of primary production may lead to substantial errors due to significant quantities of coloured dissolved organic matter (CDOM) and total suspended material (TSM) within the first optical depth. We demonstrate the use of phytoplankton absorption as a proxy to estimate primary production in the coastal waters of the North Sea and Western English Channel for both total, micro- and nano+pico-phytoplankton production. The method is implemented to extrapolate the absorption coefficient of phytoplankton and production at the sea surface to depth to give integrated fields of total and micro- and nano+pico-phytoplankton primary production using the peak in absorption coefficient at red wavelengths. The model is accurate to 8% in the Western English Channel and 22% in this region and the North Sea. By comparison, the accuracy of similar chl a based production models was >250%. The applicability of the method to autonomous optical sensors and remotely sensed aircraft data in both coastal and estuarine environments is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human activities within the marine environment give rise to a number of pressures on seabed habitats. Improved understanding of the sensitivity of subtidal sedimentary habitats is required to underpin the management advice provided for Marine Protected Areas, as well as supporting other UK marine monitoring and assessment work. The sensitivity of marine sedimentary habitats to a range of pressures induced by human activities has previously been systematically assessed using approaches based on expert judgement for Defra Project MB0102 (Tillin et al. 2010). This previous work assessed sensitivity at the level of the broadscale habitat and therefore the scores were typically expressed as a range due to underlying variation in the sensitivity of the constituent biotopes. The objective of this project was to reduce the uncertainty around identifying the sensitivity of selected subtidal sedimentary habitats by assessing sensitivity, at a finer scale and incorporating information on the biological assemblage, for 33 Level 5 circalittoral and offshore biotopes taken from the Marine Habitat Classification of Britain and Ireland (Connor et al. 2004). Two Level 6 sub-biotopes were also included in this project as these contain distinctive characterising species that differentiate them from the Level 5 parent biotope. Littoral, infralittoral, reduced and variable salinity sedimentary habitats were excluded from this project as the scope was set for assessment of circalittoral and offshore sedimentary communities. This project consisted of three Phases. • Phase 1 - define ecological groups based on similarities in the sensitivity of characterising species from the Level 5 and two Level 6 biotopes described above. • Phase 2 - produce a literature review of information on the resilience and resistance of characterising species of the ecological groups to pressures associated with activities in the marine environment. • Phase 3 - to produce sensitivity assessment ‘proformas’ based on the findings of Phase 2 for each ecological group. This report outlines results of Phase 2. The Tillin et al., (2010) sensitivity assessment methodology was modified to use the best available scientific evidence that could be collated within the project timescale. An extensive literature review was compiled, for peer reviewed and grey literature, to examine current understanding about the effects of pressures from human activities on circalittoral and offshore sedimentary communities in UK continental shelf waters, together with information on factors that contribute to resilience (recovery) of marine species. This review formed the basis of an assessment of the sensitivity of the 16 ecological groups identified in Phase 1 of the project (Tillin & Tyler-Walters 2014). As a result: • the state of knowledge on the effects of each pressure on circalittoral and offshore benthos was reviewed; • the resistance, resilience and, hence, sensitivity of sixteen ecological groups, representing 96 characteristic species, were assessed for eight separate pressures; • each assessment was accompanied by a detailed review of the relevant evidence; Assessing the sensitivity of subtidal sedimentary habitats to pressures associated with human activities • knowledge gaps and sources of uncertainty were identified for each group; • each assessment was accompanied by an assessment of the quality of the evidence, its applicability to the assessment and the degree of concordance (agreement) between the evidence, to highlight sources of uncertainty as an assessment of the overall confidence in the sensitivity assessment, and finally • limitations in the methodology and the application of sensitivity assessments were outlined. This process demonstrated that the ecological groups identified in Phase 1 (Tillin & Tyler-Walters 2014) were viable groups for sensitivity assessment, and could be used to represent the 33 circalittoral and offshore sediments biotopes identified at the beginning of the project. The results of the sensitivity assessments show: • the majority of species and hence ecological groups in sedimentary habitats are sensitive to physical change, especially loss of habitat and sediment extraction, and change in sediment type; • most sedimentary species are sensitive to physical damage, e.g. abrasion and penetration, although deep burrowing species (e.g. the Dublin Bay prawn - Nephrops norvegicus and the sea cucumber - Neopentadactyla mixta) are able to avoid damaging effects to varying degrees, depending on the depth of penetration and time of year; • changes in hydrography (wave climate, tidal streams and currents) can significantly affect sedimentary communities, depending on whether they are dominated by deposit, infaunal feeders or suspension feeders, and dependant on the nature of the sediment, which is itself modified by hydrography and depth; • sedentary species and ecological groups that dominate the top-layer of the sediment (either shallow burrowing or epifaunal) remain the most sensitive to physical damage; • mobile species (e.g. interstitial and burrowing amphipods, and perhaps cumaceans) are the least sensitive to physical change or damage, and hydrological change as they are already adapted to unstable, mobile substrata; • sensitivity to changes in organic enrichment and hence oxygen levels, is variable between species and ecological groups, depending on the exact habitat preferences of the species in question, although most species have at least a medium sensitivity to acute deoxygenation; • there is considerable evidence on the effects of bottom-contact fishing practices and aggregate dredging on sedimentary communities, although not all evidence is directly applicable to every ecological group; • there is lack of detailed information on the physiological tolerances (e.g. to oxygenation, salinity, and temperature), habitat preferences, life history and population dynamics of many species, so that inferences has been made from related species, families, or even the same phylum; • there was inadequate evidence to assess the effects of non-indigenous species on most ecological groups, and Assessing the sensitivity of subtidal sedimentary habitats to pressures associated with human activities • there was inadequate evidence to assess the effects of electromagnetic fields and litter on any ecological group. The resultant report provides an up-to-date review of current knowledge about the effects of pressures resulting from human activities of circalittoral and offshore sedimentary communities. It provides an evidence base to facilitate and support the provision of management advice for Marine Protected Areas, development of UK marine monitoring and assessment, and conservation advice to offshore marine industries. However, such a review will require at least annual updates to take advantage of new evidence and new research as it becomes available. Also further work is required to test how ecological group assessments are best combined in practice to advise on the sensitivity of a range of sedimentary biotopes, including the 33 that were originally examined.