3 resultados para Cod fisheries.
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Recent strategies to sustain fish stocks have suggested a move towards an ecosystem based fisheries management (EBFM) approach. While EBFM considers the effect of fishing at the ecosystem level, it generally struggles with climate-driven environmental variability. In this study we show that the position of a fish stock within its distributional range or thermal niche (we use Icelandic and North Sea cod as examples of stocks at the centre and edge of their niche, respectively) will influence the relative importance of fishing and climate on abundance. At the warmer edge of the thermal niche of cod in the North Sea, we show a prominent influence of climate on the cod stock that is mediated through temperature effects on the plankton. In contrast, the influence of climate through its effects on plankton appears much less important at the present centre of the niche around Iceland. Recognising the potentially strong effect of climate on fish stocks, at a time of rapid global climate change, is probably an important prerequisite towards the synthesis of a cod management strategy.
Resumo:
While a few North Atlantic cod stocks are stable, none have increased and many have declined in recent years. Although overfishing is the main cause of most observed declines, this study shows that in some regions, climate by its influence on plankton may exert a strong control on cod stocks, complicating the management of this species that often assumes a constant carrying capacity. First, we investigate the likely drivers of changes in the cod stock in the North Sea by evaluating the potential relationships between climate, plankton and cod. We do this by deriving a Plankton Index that reflects the quality and quantity of plankton food available for larval cod. We show that this Plankton Index explains 46.24% of the total variance in cod recruitment and 68.89% of the variance in total cod biomass. Because the effects of climate act predominantly through plankton during the larval stage of cod development, our results indicate a pronounced sensitivity of cod stocks to climate at the warmer, southern edge of their distribution, for example in the North Sea. Our analyses also reveal for the first time, that at a large basin scale, the abundance of Calanus finmarchicus is associated with a high probability of cod occurrence, whereas the genus Pseudocalanus appears less important. Ecosystem-based fisheries management (EBFM) generally considers the effect of fishing on the ecosystem and not the effect of climate-induced changes in the ecosystem state for the living resources. These results suggest that EBFM must consider the position of a stock within its ecological niche, the direct effects of climate and the influence of climate on the trophodynamics of the ecosystem.
A synthesis of large-scale patterns in the planktonic prey of larval and juvenile cod (Gadus morhua)
Resumo:
Data from 40 published studies of the diet composition of larval and juvenile cod (Gadus morhua) from around the northern North Atlantic were summarized to assess generic patterns in ontogenetic and regional variability in the key prey. The results showed that larvae at the northern edge of the latitudinal range of cod depend primarily on development stages of the copepod Calanus finmarchicus, whilst those at the southern edge depend on Para- and Pseudocalanus species. Juvenile cod preyed on a wider range of taxa than larvae, but euphausiids were the main target prey. Analysis of regional variations in the relative abundances of C. finmarchicus and Para/Pseudocalanus spp. in the plankton, as estimated by the continuous plankton recorder (CPR) surveys, showed a similar geographical pattern to the larval cod stomach contents. Comparison of CPR data from the 1960s and 70s with data from the 1990s showed that the boundary between C. finmarchicus and Para/Pseudocalanus spp. dominance has shifted northwards on both sides of the Atlantic, whilst the abundance of euphausiids in the southern cod stock regions has declined. The results are discussed in relation to regional differences in the response of cod stocks to climate variability.