2 resultados para Cobalt Radioisotopes
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The spatial and temporal distributions of some radionuclides in effluents originating from the British Nuclear Fuels Ltd (BNFL) reprocessing plant at Windscale, which are released into the Irish Sea, have been studied in sediments at 16 sites in the salt marsh region near Newbiggin on the Esk estuary Cumbria, England. The concentration of non-conservative radionuclides in surface sediments of the area cannot be described by a single parameter, but there is a high correlation with organic C, Cu, Al and the Si : Al ratio with particle size. The preservation of the historical record of the BNFL effluents in the Esk sediments is dependent on the hydrology of the area, as it effects such processes as accretion, erosion and remixing. From the 106Ru and 210Po concentrations and the 137Cs : 134Cs ratio in the sediment profiles with depth, we have identified these processes. Sedimentation rates at sites of accretion vary between 0·5 and 3 cm year−1. However, at some sites they appear to be much higher, approximately 6 cm year−1 in the top 10 cm, but they are not consistent throughout the depth profiles. This may be a true reflection of variable accretion related to sediment type, or one which is influenced by surficial mixing. Some cores showed evidence of continuous accretion but no significant radioactivity was detected at depths below 35–40 cm, indicating an overall sedimentation rate of approximately 1·5 cm year−1 for the 25–30-year period since BNFL effluents first entered the Irish Sea.
Resumo:
Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values (7–23 TgN a−1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from open fires and soils.