2 resultados para Co-operative effect
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
In the frame of the European Project on Ocean Acidification (EPOCA), the response of an Arctic pelagic community (<3 mm) to a gradient of seawater pCO(2) was investigated. For this purpose 9 large-scale in situ mesocosms were deployed in Kongsfjorden, Svalbard (78 degrees 56.2' N, 11 degrees 53.6' E), in 2010. The present study investigates effects on the communities of particle-attached (PA; >3 mu m) and free-living (FL; <3 mu m > 0.2 mu m) bacteria by Automated Ribosomal Intergenic Spacer Analysis (ARISA) in 6 of the mesocosms, ranging from 185 to 1050 mu atm initial pCO(2), and the surrounding fjord. ARISA was able to resolve, on average, 27 bacterial band classes per sample and allowed for a detailed investigation of the explicit richness and diversity. Both, the PA and the FL bacterioplankton community exhibited a strong temporal development, which was driven mainly by temperature and phytoplankton development. In response to the breakdown of a picophytoplankton bloom, numbers of ARISA band classes in the PA community were reduced at low and medium CO2 (similar to 185-685 mu atm) by about 25 %, while they were more or less stable at high CO2 (similar to 820-1050 mu atm). We hypothesise that enhanced viral lysis and enhanced availability of organic substrates at high CO2 resulted in a more diverse PA bacterial community in the post-bloom phase. Despite lower cell numbers and extracellular enzyme activities in the post-bloom phase, bacterial protein production was enhanced in high CO2 mesocosms, suggesting a positive effect of community richness on this function and on carbon cycling by bacteria.
Resumo:
1. The effect of habitat fragmentation was investigated in two adjacent, yet separate, intertidal Zostera marina beds in the Salcombe Estuary, Devon, UK. The seagrass bed on the west bank comprised a continuous meadow of ca. 2.3 ha, whilst the bed on the east bank of the estuary was fragmented into patches of 6–9 m2.2. Three 10 cm diameter core samples for infaunal macroinvertebrates were taken from three stations within each bed. No significant difference was found in univariate community parameters between beds, or in measured seagrass parameters. However, multivariate analysis revealed a significant difference in community composition, due mainly to small changes in species abundance rather than differences in the species present.3. The species contributing most to the dissimilarity between the two communities were polychaetes generally associated with unvegetated habitats (e.g. Magelona mirabilis) and found to be more common in the fragmented bed.4. A significant difference in median grain size and sorting coefficient was recorded between the two beds, and median grain size was found to be the variable best explaining multivariate community patterns.5. The results of the study provide evidence for the effects of habitat fragmentation on the communities associated with seagrass beds, habitats which are of high conservation importance. As the infaunal community is perhaps intuitively the component least likely to be affected by fragmentation at the scale observed, the significant difference in community composition recorded has consequences for more sensitive and high-profile parts of the biota (e.g. fish), and thus for the conservation of seagrass habitats and their associated communities.