14 resultados para Cintra Stream

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tidal stream turbines could have several direct impacts upon pursuit-diving seabirds foraging within tidal stream environments (mean horizontal current speeds > 2 ms−1), including collisions and displacement. Understanding how foraging seabirds respond to temporally variable but predictable hydrodynamic conditions immediately around devices could identify when interactions between seabirds and devices are most likely to occur; information which would quantify the magnitude of potential impacts, and also facilitate the development of suitable mitigation measures. This study uses shore-based observational surveys and Finite Volume Community Ocean Model outputs to test whether temporally predictable hydrodynamic conditions (horizontal current speeds, water elevation, turbulence) influenced the density of foraging black guillemots Cepphus grylle and European shags Phalacrocorax aristotelis in a tidal stream environment in Orkney, United Kingdom, during the breeding season. These species are particularly vulnerable to interactions with devices due to their tendency to exploit benthic and epi-benthic prey on or near the seabed. The density of both species decreased as a function of horizontal current speeds, whereas the density of black guillemots also decreased as a function of water elevation. These relationships could be linked to higher energetic costs of dives in particularly fast horizontal current speeds (>3 ms−1) and deeper water. Therefore, interactions between these species and moving components seem unlikely at particularly high horizontal current speeds. Combining this information, with that on the rotation rates of moving components at lower horizontal current speeds, could be used to assess collision risk in this site during breeding seasons. It is also likely that moderating any device operation during both lowest water elevation and lowest horizontal current speeds could reduce the risk of collisions for these species in this site during this season. The approaches used in this study could have useful applications within Environmental Impact Assessments, and should be considered when assessing and mitigating negative impacts from specific devices within development sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the Gulf Stream (GS) system to atmospheric forcing is generally linked either to the basin-scale winds on the subtropical gyre or to the buoyancy forcing from the Labrador Sea. This study presents a multiscale synergistic perspective to describe the low-frequency response of the GS system. The authors identify dominant temporal variability in the North Atlantic Oscillation (NAO), in known indices of the GS path, and in the observed GS latitudes along its path derived from sea surface height (SSH) contours over the period 1993-2013. The analysis suggests that the signature of interannual variability changes along the stream's path from 75 degrees to 55 degrees W. From its separation at Cape Hatteras to the west of 65 degrees W, the variability of the GS is mainly in the near-decadal (7-10 years) band, which is missing to the east of 60 degrees W, where a new interannual (4-5 years) band peaks. The latter peak (4-5 years) was missing to the west of 65 degrees W. The region between 65 degrees and 60 degrees W seems to be a transition region. A 2-3-yr secondary peak was pervasive in all time series, including that for the NAO. This multiscale response of the GS system is supported by results from a basin-scale North Atlantic model. The near-decadal response can be attributed to similar forcing periods in the NAO signal; however, the interannual variability of 4-5 years in the eastern segment of the GS path is as yet unexplained. More numerical and observational studies are warranted to understand such causality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of the Gulf Stream (GS) system to atmospheric forcing is generally linked either to the basin-scale winds on the subtropical gyre or to the buoyancy forcing from the Labrador Sea. This study presents a multiscale synergistic perspective to describe the low-frequency response of the GS system. The authors identify dominant temporal variability in the North Atlantic Oscillation (NAO), in known indices of the GS path, and in the observed GS latitudes along its path derived from sea surface height (SSH) contours over the period 1993-2013. The analysis suggests that the signature of interannual variability changes along the stream's path from 75 degrees to 55 degrees W. From its separation at Cape Hatteras to the west of 65 degrees W, the variability of the GS is mainly in the near-decadal (7-10 years) band, which is missing to the east of 60 degrees W, where a new interannual (4-5 years) band peaks. The latter peak (4-5 years) was missing to the west of 65 degrees W. The region between 65 degrees and 60 degrees W seems to be a transition region. A 2-3-yr secondary peak was pervasive in all time series, including that for the NAO. This multiscale response of the GS system is supported by results from a basin-scale North Atlantic model. The near-decadal response can be attributed to similar forcing periods in the NAO signal; however, the interannual variability of 4-5 years in the eastern segment of the GS path is as yet unexplained. More numerical and observational studies are warranted to understand such causality.