73 resultados para Chlorophyll a fluorescence

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous autoanalytical recordings of the axial distributions of dissolved nitrate, silicate and phosphate in the influent freshwater and saline waters of the Tamar Estuary, south-west England have been obtained. Short-term variability in the distributions was assessed by repetitive profiling at approximately 3-h intervals on a single day and seasonal comparisons were obtained from ten surveys carried out between June 1977 and August 1978. Whereas nitrate is always essentially conserved throughout the upper estuary, the silicate- and phosphate-salinity relationships consistently indicate a non-biological removal of these nutrients within the low (0–10%) salinity range. Attempts to quantify precisely the degree of removal and to correlate this with changes in environmental properties (pH, turbidity, chlorophyll fluorescence, salinity, freshwater composition) were mainly inconclusive due to short-term fluctuations in the riverine concentrations of silicate and phosphate advected into the reactive region and to the rapid changes in turbidity brought about by tidally-induced resuspension and deposition of bottom sediment.