4 resultados para Chemistry, Inorganic

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese (Mn) is a required element for oceanic phytoplankton as it plays a critical role in photosynthesis, through its unique redox chemistry, as the active site in photosystem II, and in enzymes that act as defenses against reactive oxygen species (ROS), most notably for protection against superoxide (O2?), through the action of superoxide dismutase (SOD), and against hydrogen peroxide (H2O2) via peroxidases and catalases. The distribution and redox speciation of Mn in the ocean is also apparently controlled by reactions with ROS. Here we examine the connections between ROS and dissolved Mn species in the upper ocean using field and laboratory experimental data. Our results suggest it is unlikely that significant concentrations of Mn(III) are produced in the euphotic zone, as in the absence of evidence for the existence of strong Mn(III) ligands, Mn(II) reacts with O2? to form the short-lived transient manganous superoxide, MnO2+, which may react rapidly with other redox species in a manner similar to O2?. Experiments with the strong Mn(III) chelator, desferrioxamine B (DFB), in seawater indicated that the Mn(III) species are unlikely to form, as formation of the precursor Mn(II) complex is hindered due to the stability of the Ca complex with DFB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sea-surface layer is the very upper part of the sea surface where reduced mixing leads to strong gradients in physical, chemical and biological properties1. This surface layer is naturally reactive, containing a complex chemistry of inorganic components and dissolved organic matter (DOM), the latter including amino acids, proteins, fatty acids, carbohydrates, and humic-type components,2 with a high proportion of functional groups such as carbonyls, carboxylic acids and aromatic moieties.3 The different physical and chemical properties of the surface of the ocean compared with bulk seawater, and its function as a gateway for molecules to enter the atmosphere or ocean phase, make this an interesting and important region for study. A number of chemical reactions are believed to occur on and in the surface ocean; these may be important or even dominant sources or sinks of climatically-active marine trace gases. However the sea surface, especially the top 1um to 1mm known as the sea surface microlayer (ssm), is critically under-sampled, so to date much of the evidence for such chemistry comes from laboratory and/or modeling studies. This review discusses the chemical and physical structure of the sea surface, mechanisms for gas transfer across it, and explains the current understanding of trace gas formation at this critical interface between the ocean and atmosphere.