8 resultados para COVARIANCE FUNCTIONS
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The hemocytes of Mytilus californianus are of three types: small and large basophils and large granular acidophils. The basophils contain lysosomal enzymes and phagocytose colloidal carbon. Agglutinins for yeast and human A Rh+ve erythrocytes are present in plasma, but are not needed for effective phagocytosis; in vitro both acidophilic and basophilic hemocytes rapidly phagocytose these particles. Plasma proteins, analyzed electrophoretically, are under strong homeostatic control. When Mya arenaria mantle is placed orthotopically on M. californianus mantle, the implant is invaded by host hemocytes in a manner consistent with that described in other published reports on molluscan graft rejection. Steady state is achieved by 26 days postimplant. Second- and third-set implants are rejected more rapidly than are first-set implants, but this is not a specific response. Third-set implants elicit a host cellular response that is more localized than the response to first-set implants. These data do not permit conclusions with respect to memory in these molluscan immune responses, but do imply a qualitative “improvement” in this quasi-immune response of M. californianus.
Resumo:
Whilst the biological consequences of long-term, gradual changes in acidity associated with the oceanic uptake of atmospheric carbon dioxide (CO2) are increasingly studied, the potential effects of rapid acidification associated with a failure of sub-seabed carbon storage infrastructure have received less attention. This study investigates the effects of severe short-term (8 days) exposure to acidified seawater on infaunal mediation of ecosystem processes (bioirrigation and sediment particle redistribution) and functioning (nutrient concentrations). Following acidification, individuals of Amphiura filiformis exhibited emergent behaviour typical of a stress response, which resulted in altered bioturbation, but limited changes in nutrient cycling. Under acidified conditions, A. filiformis moved to shallower depths within the sediment and the variability in occupancy depth reduced considerably. This study indicated that rapid acidification events may not be lethal to benthic invertebrates, but may result in behavioural changes that could have longer-term implications for species survival, ecosystem structure and functioning.
Resumo:
We present here vertical fluxes of oxygenated volatile organic compounds (OVOCs) measured with eddy covariance (EC) during the period of March to July 2012 near the southwest coast of the United Kingdom. The performance of the proton-transfer-reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Observed mixing ratios and fluxes of OVOCs (specifically methanol, acetaldehyde, and acetone) vary significantly with time of day and wind direction. Higher mixing ratios and fluxes of acetaldehyde and acetone are found in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol mixing ratio and flux do not demonstrate consistent diel variability, suggesting sources in addition to plants. We estimate air-sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1 sigma) mixing ratio of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction out-paces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime mixing ratios of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long-distance transport, respectively.
Resumo:
Regime shift and principal component analysis of a spatially disaggregated database capturing time-series of climatic, nutrient and plankton variables in the North Sea revealed considerable covariance between groups of ecosystem indicators. Plankton and climate time-series span the period 1958–2003, those of nutrients start in 1980. In both regions, the period from 1989 to 2001 identified in principal component 1 had warmer surface waters, higher Atlantic inflow and stronger winds, than the periods before or after. However, it was preceded by a regime shift in both open (PC2) and coastal (PC3) waters during 1977 towards more hours of sunlight and higher water temperature, which lasted until 1997. The relative influence of nutrient availability and climatic forcing differed between open and coastal North Sea regions. Inter-annual variability in phytoplankton dynamics of the open North Sea was primarily regulated by climatic forcing, specifically by sea surface temperature, Atlantic inflow and co-varying wind stress and NAO. Coastal phytoplankton variability, however, was regulated by insolation and sea surface temperature, as well as Si availability, but not by N or P. Regime shifts in principal components of hydrographic and climatic variables (explaining 55 and 61% of the variance in coastal and open water variables) were detected using Rodionov's sequential t-test. These shifts in hydroclimatic variables which occurred around 1977, 1989, 1997 and 2001, were synchronized in open and coastal waters, and were tracked by open water chlorophyll and copepods, but not by coastal plankton. North–central–south or open-coastal spatial breakdowns of the North Sea explained similar amounts of variability in most ecosystem indicators with the exception of diatom abundance and chlorophyll concentration, which were clearly better explained using the open-coastal configuration.