15 resultados para CORALS

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the 1970s and 1980s, the late Dr Norman Holme undertook extensive towed sledge surveys in the English Channel and some in the Irish Sea. Only a minority of the resulting images were analysed and reported before his death in 1989 but logbooks, video and film material has been archived in the National Marine Biological Library (NMBL) in Plymouth. A study was therefore commissioned by the Joint Nature Conservation Committee and as a part of the Mapping European Seabed Habitats (MESH) project to identify the value of the material archived and the procedure and cost to undertake further work (Phase 1 of the study reported here: Oakley & Hiscock, 2005). Some image analysis was undertaken as a part of Phase 1. Phase 2 (this report) was to further analyse selected images. Having determined in Phase 1 that only the 35 mm photographic transparencies provided sufficient clarity to identify species and biotopes, the tows selected for analysis were ones where 35mm images had been taken. The tows selected for analysis of images were mainly in the vicinity of Plymouth and especially along the area between Rame Head and the region of the Eddystone. The 35 mm films were viewed under a binocular microscope and the taxa that could be recognised recorded in note form. Twenty-five images were selected for inclusion in the report. Almost all of the images were of level sediment seabed. Where rocks were included, it was usually unplanned and the sled was hauled before being caught or damaged. The main biotopes or biotope complexes identified were: SS.SMU.CSaMu. Circalittoral sandy mud. Extensively present between the shore and the Eddystone Reef complex and at depths of about 48 to 52 m. At one site offshore of Plymouth Sound, the turret shell Turritella communis was abundant. In some areas, this biotope had dense anemones, Mesacmaea mitchelli and (more rarely) Cerianthus lloydii. Queen scallops, Aequipecten opercularis and king scallops, Pecten maximus, were sometimes present in small numbers. Hard substratum species such as hydroids, dead mens fingers Alcyonium digitatum and the cup coral Caryophyllia smithii occurred in a few places, probably attached to shells or stones beneath the surface. South of the spoil ground off Hilsea Point at 57m depth, the sediment was muddier but is still assigned to this biotope complex. It is notable that three small sea pens, most likely Virgularia mirabilis, were seen here. SS.SMx.CMx. Circalittoral mixed sediment. Further offshore but at about the same depth as SS.SMU.CSaMu occurred, coarse gravel with some silt was present. The sediment was characterised must conspicuously by small queen scallops, Aequipecten opercularis. Peculiarly, there were ‘bundles’ of the branching bryozoan Cellaria sp. – a species normally found attached to rock. It could not be seen whether these bundles of Cellaria had been brought-together by terebellid worms but it is notable that Cellaria is recorded in historical surveys. As with many other sediments, there were occasional brittle stars, Ophiocomina nigra and Ophiura ophiura. Where sediments were muddy, the burrowing anemone Mesacmaea mitchelli was common. Where pebbles or cobbles occurred, there were attached species such as Alcyonium digitatum, Caryophyllia smithii and the fleshy bryozoan Alcyonidium diaphanum. Undescribed biotope. Although most likely a part of SS.SMx.CMx, the biotope visually dominated by a terebellid worm believed to be Thelepus cincinnatua, is worth special attention as it may be an undescribed biotope. The biotope occurred about 22 nautical miles south of the latitude of the Eddystone and in depths in excess of 70 m. SS.SCS.CCS.Blan. Branchiostoma lanceolatum in circalittoral coarse sand with shell gravel at about 48m depth and less. This habitat was the ‘classic’ ‘Eddystone Shell Gravel’ which is sampled for Branchiostoma lanceolatum. However, no Branchiostoma lanceolatum could be seen. The gravel was almost entirely bare of epibiota. There were occasional rock outcrops or cobbles which had epibiota including encrusting calcareous algae, the sea fan Eunicella verrucosa, cup corals, Caryophyllia smithii, hydroids and a sea urchin Echinus esculentus. The variety of species visible on the surface is small and therefore identification to biotope not usually possible. Historical records from sampling surveys that used grabs and dredges at the end of the 19th century and early 20th century suggest similar species present then. Illustrations of some of the infaunal communities from work in the 1920’s is included in this report to provide a context to the epifaunal photographs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea‐level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up ∼40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean ‘carbon pumps’ (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice–ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold-water corals are associated with high local biodiversity, but despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has decreased from 8.2 to ~8.1, and predicted CO2 emissions will decrease by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Here, we present the first short-term (21 days) data on the effects of increased CO2 (750 ppm) upon the metabolism of freshly collected L. pertusa from Mingulay Reef Complex, Scotland, for comparison with net calcification. Over 21 days, corals exposed to increased CO2 conditions had significantly lower respiration rates (11.4±1.39 SE, µmol O2 g−1 tissue dry weight h−1) than corals in control conditions (28.6±7.30 SE µmol O2 g−1 tissue dry weight h−1). There was no corresponding change in calcification rates between treatments, measured using the alkalinity anomaly technique and 14C uptake. The decrease in respiration rate and maintenance of calcification rate indicates an energetic imbalance, likely facilitated by utilisation of lipid reserves. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification has been suggested as a serious threat to the future existence of cold-water corals (CWC). However, there are few fine-scale temporal and spatial datasets of carbonate and nutrients conditions available for these reefs, which can provide a baseline definition of extant conditions. Here we provide observational data from four different sites in the northeast Atlantic that are known habitats for CWC. These habitats differ by depth and by the nature of the coral habitat. At depths where CWC are known to occur across these sites the dissolved inorganic carbon ranged from 2088 to 2186 μmol kg−1, alkalinity ranged from 2299 to 2346 μmol kg−1, and aragonite Ω ranged from 1.35 to 2.44. At two sites fine-scale hydrodynamics caused increased variability in the carbonate and nutrient conditions over daily time-scales. The observed high level of variability must be taken into account when assessing CWC sensitivities to future environmental change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many marine habitats, such as the surface and tissues of marine invertebrates, including corals, harbour diverse populations of microorganisms, which are thought to play a role in the health of their hosts and influence mutualistic and competitive interactions. Investigating the presence and stability of quorum sensing (QS) in these ecosystems may shed light on the roles and control of these bacterial communities. Samples of 13 cnidarian species were screened for the presence and diversity of N-acyl-homoserine lactones (AHLs; a prevalent type of QS molecule) using thin-layer chromatography and an Agrobacterium tumefaciens NTL4 biosensor. Ten of 13 were found to harbour species-specific, conserved AHL profiles. AHLs were confirmed in Anemonia viridis using liquid chromatography tandem mass spectrometry. To assess temporal role and stability, AHLs were investigated in A. viridis from intertidal pools over 16 h. Patterns of AHLs showed conserved profiles except for two mid-chain length AHLs, which increased significantly over the day, peaking at 20:00, but had no correlation with pool chemistry. Denaturing gel electrophoresis of RT-PCR-amplified bacterial 16S rRNA showed the presence of an active bacterial community that changed in composition alongside AHL profiles and contained a number of bands that affiliate with known AHL-producing bacteria. Investigations into the quorum sensing-controlled, species-specific roles of these bacterial communities and how these regulatory circuits are influenced by the coral host and members of the bacterial community are imperative to expand our knowledge of these interactions with respect to the maintenance of coral health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bacterial communities associated with healthy and diseased colonies of the cold-water gorgonian coral Eunicella verrucosa at three sites off the south-west coast of England were compared using denaturing gradient gel electrophoresis (DGGE) and clone libraries. Significant differences in community structure between healthy and diseased samples were discovered, as were differences in the level of disturbance to these communities at each site; this correlated with depth and sediment load. The majority of cloned sequences from healthy coral tissue affiliated with the Gammaproteobacteria. The stability of the bacterial community and dominance of specific genera found across visibly healthy colonies suggest the presence of a specific microbial community. Affiliations included a high proportion of Endozoicomonas sequences, which were most similar to sequences found in tropical corals. This genus has been found in a number of invertebrates and is suggested to have a role in coral health and in the metabolisation of dimethylsulfoniopropionate (DMSP) produced by zooxanthellae. However, screening of colonies for the presence of zooxanthellae produced a negative result. Diseased colonies showed a decrease in affiliated clones and an increase in clones related to potentially harmful/transient microorganisms but no increase in a particular pathogen. This study demonstrates that a better understanding of these bacterial communities, the factors that affect them and their role in coral health and disease will be of critical importance in predicting future threats to temperate gorgonian communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.