15 resultados para COMPLEMENT-FIXATION

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have made daily measurements of phytoplankton pigments, size-fractionated (<2 and >2-μm) carbon fixation and chlorophyll-a concentration during four Atlantic Meridional Transect (AMT) cruises in 2003–04. Surface rates of carbon fixation ranged from <0.2-mmol C m−3 d−1 in the subtropical gyres to 0.2–0.5-mmol C m−3 d−1 in the tropical equatorial Atlantic. Significant intercruise variability was restricted to the subtropical gyres, with higher chlorophyll-a concentrations and carbon fixation in the subsurface chlorophyll maximum during spring in either hemisphere. In surface waters, although picoplankton (<2-μm) represented the dominant fraction in terms of both carbon fixation (50–70%) and chlorophyll-a (80–90%), nanoplankton (>2-μm) contributions to total carbon fixation (30–50%) were higher than to total chlorophyll-a (10–20%). However, in the subsurface chlorophyll maximum picoplankton dominated both carbon fixation (70–90%) and chlorophyll-a (70–90%). Thus, in surface waters chlorophyll-normalised carbon fixation was 2–3 times higher for nanoplankton and differences in picoplankton and nanoplankton carbon to chlorophyll-a ratios may lead to either higher or similar growth rates. These low chlorophyll-normalised carbon fixation rates for picoplankton may also reflect losses of fixed carbon (cell leakage or respiration), decreases in photosynthetic efficiency, grazing losses during the incubations, or some combination of all these. Comparison of nitrate concentrations in the subsurface chlorophyll maximum with estimates of those required to support the observed rates of carbon fixation (assuming Redfield stoichiometry) indicate that primary production in the chlorophyll maximum may be light rather than nutrient limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Three control mesocosms were maintained under ambient conditions of carbonate chemistry. The remainder were manipulated with CO2 saturated seawater to attain target amendments of pCO2 of 550, 650, 750, 850, 1000 and 1250 μatm. Rates of N2 fixation were elevated up to 10 times relative to control rates (2.00 ± 1.21 nmol L-1d-1) when pCO2 concentrations were >1000 μatm and pHT (total scale) < 7.74. Diazotrophic phylotypes commonly found in oligotrophic marine waters, including the Mediterranean, were not present at the onset of the experiment and therefore, the diazotroph community composition was characterised by amplifying partial nifH genes from the mesocosms. The diazotroph community was comprised primarily of cluster III nifH sequences (which include possible anaerobes), and proteobacterial (α and γ) sequences, in addition to small numbers of filamentous (or pseudo-filamentous) cyanobacterial phylotypes. The implication from this study is that there is some potential for elevated N2 fixation rates in the coastal western Mediterranean before the end of this century as a result of increasing ocean acidification. Observations made of variability in the diazotroph community composition could not be correlated with changes in carbon chemistry, which highlights the complexity of the relationship between ocean acidification and these keystone organisms.