2 resultados para CLADOCERANS

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The digestion of natural, mainly crustacean zooplankton, by different age groups of turbot Scophthalmus maximus larvae was evaluated by comparisons of visual appearance, dry weight and carbon and nitrogen content of fresh food organisms with material recovered from faeces. Visually, the degree of digestion of food particles ranged from no discernible change of lamellibranch larvae, copepod eggs, intact copepod faecal pellets and some phytoplankton species, to varying degrees of removal of body constituents in copepods, cladocerans and decapod zoea. For crustaceans, the proportion of body constituents removed was related to the size and construction of their apparently indigestible exoskeleton. Uppon defaecation larger organisms showed the greatest percentage loss in dry weight and carbon. A high percentage of nitrogen was extracted from all organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate effects have been shown to be at least partly responsible for the reorganisation in the plankton ecosystem on the shelf seas of NW Europe over the last 50 years. Most fish larvae feed primarily on zooplankton, so changes in zooplankton quantity, quality and seasonal timing have been hypothesized to be a key factor affecting their survival. To investigate this we have implemented a 1-dimensional trophodynamic growth model of cod larvae for the waters around the UK covering the period 1960 to 2003. Larval growth is modelled as the difference between the amount of food absorbed by the larva and its various metabolic costs. Prey availability is based upon the biomass and size of available preys (i.e. adults and nauplii copepods and cladocerans) taken from the Continuous Plankton Recorder dataset. Temperature and wind forcing are also taken into account. Results suggest that observed changes in plankton community structure may have had less impact than previously suggested. This is because changes in prey availability may be compensated for by increased temperatures resulting in little overall impact on potential larval growth. Stock recovery, at least in the short term is likely to be more dependent upon conserving the year classes recruited to allow spawning stock biomass to rebuild. If as our model suggests, the larvae are still able to survive in the changing environment, reduction in fishing on the adults is needed to allow the stock to recover.