5 resultados para CCM-DEAD
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
During the 1970s and 1980s, the late Dr Norman Holme undertook extensive towed sledge surveys in the English Channel and some in the Irish Sea. Only a minority of the resulting images were analysed and reported before his death in 1989 but logbooks, video and film material has been archived in the National Marine Biological Library (NMBL) in Plymouth. A study was therefore commissioned by the Joint Nature Conservation Committee and as a part of the Mapping European Seabed Habitats (MESH) project to identify the value of the material archived and the procedure and cost to undertake further work (Phase 1 of the study reported here: Oakley & Hiscock, 2005). Some image analysis was undertaken as a part of Phase 1. Phase 2 (this report) was to further analyse selected images. Having determined in Phase 1 that only the 35 mm photographic transparencies provided sufficient clarity to identify species and biotopes, the tows selected for analysis were ones where 35mm images had been taken. The tows selected for analysis of images were mainly in the vicinity of Plymouth and especially along the area between Rame Head and the region of the Eddystone. The 35 mm films were viewed under a binocular microscope and the taxa that could be recognised recorded in note form. Twenty-five images were selected for inclusion in the report. Almost all of the images were of level sediment seabed. Where rocks were included, it was usually unplanned and the sled was hauled before being caught or damaged. The main biotopes or biotope complexes identified were: SS.SMU.CSaMu. Circalittoral sandy mud. Extensively present between the shore and the Eddystone Reef complex and at depths of about 48 to 52 m. At one site offshore of Plymouth Sound, the turret shell Turritella communis was abundant. In some areas, this biotope had dense anemones, Mesacmaea mitchelli and (more rarely) Cerianthus lloydii. Queen scallops, Aequipecten opercularis and king scallops, Pecten maximus, were sometimes present in small numbers. Hard substratum species such as hydroids, dead mens fingers Alcyonium digitatum and the cup coral Caryophyllia smithii occurred in a few places, probably attached to shells or stones beneath the surface. South of the spoil ground off Hilsea Point at 57m depth, the sediment was muddier but is still assigned to this biotope complex. It is notable that three small sea pens, most likely Virgularia mirabilis, were seen here. SS.SMx.CMx. Circalittoral mixed sediment. Further offshore but at about the same depth as SS.SMU.CSaMu occurred, coarse gravel with some silt was present. The sediment was characterised must conspicuously by small queen scallops, Aequipecten opercularis. Peculiarly, there were ‘bundles’ of the branching bryozoan Cellaria sp. – a species normally found attached to rock. It could not be seen whether these bundles of Cellaria had been brought-together by terebellid worms but it is notable that Cellaria is recorded in historical surveys. As with many other sediments, there were occasional brittle stars, Ophiocomina nigra and Ophiura ophiura. Where sediments were muddy, the burrowing anemone Mesacmaea mitchelli was common. Where pebbles or cobbles occurred, there were attached species such as Alcyonium digitatum, Caryophyllia smithii and the fleshy bryozoan Alcyonidium diaphanum. Undescribed biotope. Although most likely a part of SS.SMx.CMx, the biotope visually dominated by a terebellid worm believed to be Thelepus cincinnatua, is worth special attention as it may be an undescribed biotope. The biotope occurred about 22 nautical miles south of the latitude of the Eddystone and in depths in excess of 70 m. SS.SCS.CCS.Blan. Branchiostoma lanceolatum in circalittoral coarse sand with shell gravel at about 48m depth and less. This habitat was the ‘classic’ ‘Eddystone Shell Gravel’ which is sampled for Branchiostoma lanceolatum. However, no Branchiostoma lanceolatum could be seen. The gravel was almost entirely bare of epibiota. There were occasional rock outcrops or cobbles which had epibiota including encrusting calcareous algae, the sea fan Eunicella verrucosa, cup corals, Caryophyllia smithii, hydroids and a sea urchin Echinus esculentus. The variety of species visible on the surface is small and therefore identification to biotope not usually possible. Historical records from sampling surveys that used grabs and dredges at the end of the 19th century and early 20th century suggest similar species present then. Illustrations of some of the infaunal communities from work in the 1920’s is included in this report to provide a context to the epifaunal photographs.
Resumo:
A pedunculate barnacle, Leucolepas longa, occurs in densities over 1000 individuals m[minus sign]2 on the summit of a small seamount near New Ireland, Papua New Guinea. Most of the population grows on vesicomyid clams projecting from sulphide-rich sediments, or on their dead shells, but the barnacle also settles on rock and on tubes of a vestimentiferan. Collections of several hundred barnacles allowed comparison of population and reproductive characteristics. The barnacle is a suspension feeder with a lightly-armoured stalk that can grow to 40 cm above the bottom. Growth appears to be rapid and both reproduction and recruitment are continuous. The barnacles brood egg masses within the capitular chamber and 46% of one sample was brooding. Lecithotrophic nauplii released upon retrieval to the surface were cultivated for 45 days. Metamorphosis to Stage IV yielded an actively swimming larva about 1 mm long overall, which still contained lipid reserves, indicating capacity for wide dispersal
Resumo:
Sabellaria spinulosa reefs are considered to be sensitive and of high conservation status. This article evaluates the feasibility of using remote sensing technology to delineate S. spinulosa reefs. S. spinulosa reef habitats associated with the Thanet Offshore Windfarm site were mapped using high resolution sidescan sonar (410 kHz) and multibeam echo sounder (<1 m2) data in 2005 (baseline), 2007 (pre-construction baseline) and 2012 (post-construction). The S. spinulosa reefs were identified in the acoustic data as areas of distinct irregular texturing. Maps created using acoustic data were validated using quantitative measures of reef quality, namely tube density (as a proxy for the density of live S. spinulosa), percentage cover of S. spinulosa structures (both living and dead) and associated macrofauna derived from seabed images taken across the development site. Statistically significant differences were observed in all physical measures of S. spinulosa as well the number (S) and diversity (H׳) of associated species, derived from seabed images classified according to the presence or absence of reef, validating the use of high resolution sidescan sonar to map these important biogenic habitats. High precision mapping in the early stages allowed for the micro-siting of wind turbines in a way that caused minimal damage to S. spinulosa reefs during construction. These habitats have since recovered and expanded in extent. The surveys undertaken at the Thanet Offshore Windfarm site demonstrate the importance of repeat mapping for this emerging industry, allowing habitat enhancement to be attributed to the development whilst preventing background habitat degradation from being wrongly attributed to the development.