5 resultados para CANOPY COVER
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The Continuous Plankton Recorder survey has monitored plankton in the Northwest Atlantic at monthly intervals since 1962, with an interegnum between 1978 and 1990. In May 1999, large numbers of the Pacific diatom Neodenticula seminae were found in Continuous Plankton Recorder (CPR) samples in the Labrador Sea as the first record in the North Atlantic for more than 800 000 years. The event coincided with modifications in Arctic hydrography and circulation, increased flows of Pacific water into the Northwest Atlantic and in the previous year the exceptional occurrence of extensive ice-free water to the North of Canada. These observations indicate that N. seminae was carried in a pulse of Pacific water in 1998/early 1999 via the Canadian Arctic Archipelago and/or Fram Strait. The species occurred previously in the North Atlantic during the Pleistocene from similar to 1.2 to similar to 0.8 Ma as recorded in deep sea sediment cores. The reappearance of N. seminae in the North Atlantic is an indicator of the scale and speed of changes that are taking place in the Arctic and North Atlantic oceans as a consequence of regional climate warming. Because of the unusual nature of the event it appears that a threshold has been passed, marking a change in the circulation between the North Pacific and North Atlantic Oceans via the Arctic. Trans-Arctic migrations from the Pacific into the Atlantic are likely to occur increasingly over the next 100 years as Arctic ice continues to melt affecting Atlantic biodiversity and the biological pump with consequent feedbacks to the carbon cycle.
Resumo:
Antarctic krill (Euphausia superba) were sampled in contrasting habitats: a seasonally ice-covered deep ocean (Lazarev Sea), ice-free shelves at their northern range (South Georgia) and the Antarctic Peninsula (Bransfield Strait), and shelf and oceanic sites in the Scotia Sea. Across 92 stations, representing a year-round average, the food volume in krill stomachs comprised 71 +/- 29% algae, 17 +/- 21% protozoans, and 12 +/- 25% metazoans. Fatty acid trophic markers showed that copepods were consistently part of krill diet, not a switch food. In open waters, both diatom and copepod consumption increased with phytoplankton abundance. Under sea ice, ingestion of diatoms became rare, whereas feeding on copepods remained constant. During winter, larvae contained high but variable proportions of diatom markers, whereas in postlarvae the role of copepods increased with krill body length. Overwintering differed according to habitat. Krill from South Georgia had lower lipid stores than those from the Bransfield Strait or Lazarev Sea. Feeding effort was much reduced in Lazarev Sea krill, whereas most individuals from the Bransfield Strait and South Georgia contained phytoplankton and seabed detritus in their stomachs. Their retention of essential body reserves indicates that krill experienced most winter hardship in the Lazarev Sea, followed by South Georgia and then Bransfield Strait. This was reflected in the delayed development from juveniles to adults in the Lazarev Sea. Circumpolar comparisons of length frequencies suggest that krill growth conditions are more favorable in the southwest Atlantic than in the Lazarev Sea or off East Antarctica because of longer phytoplankton bloom periods and rewarding access to benthic food.