15 resultados para Bluff-Body
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Multivariate experiments are used to study the effects of body size, food concentration, and season on the oxygen consumption, ammonia excretion, food assimilation efficiency and filtration rate of Mytilus edulis adults. Food concentrations and season affect both the intercept and the slope of the allometric equation describing oxygen uptake as a function of body size. Multiple regression and response surface techniques are used to describe and illustrate the complex relationship between metabolic rate, ration, season and the body size of M. edulis. Filtration rate has a relatively low weight exponent Q> = 038) and the intercept for the allometric equation is not significantly affected by food concentration, season or acclimation temperatures between 5 and 20 °C. Food assimilation efficiency declines exponentially with increasing food concentration and is dependent on body size at high food levels. The rate of ammonia excretion shows a similar seasonal cycle to that of oxygen consumption. They are both minimal in the autumn/winter and reach a maximum in the spring /summer.
Resumo:
The effects of short-term (7 d) exposure to environmental hypoxia (2.11 mg O-2 L-1; control: 6.96 mg O-2 L-1) and varying degrees of shell damage (1 or 2, 1 mm diameter holes; control: no holes) on respiration rate, clearance rate, ammonia excretion rate, scope for growth (SFG) and body condition index were investigated in adult blue mussels (Mytilus edulis). There was a significant hypoxia-related reduction in SFG (>6.70 to 0.92J g(-1) h(-1)) primarily due to a reduction in energy acquisition as a result of reduced clearance rates during hypoxia. Shell damage had no significant affect on any of the physiological processes measured or the SFG calculated. Body condition was unaffected by hypoxia or shell damage. In conclusion, minor physical damage to mussels had no effect on physiological energetics but environmental hypoxia compromised growth, respiration and energy acquisition presumably by reducing feeding rates.