4 resultados para Bimodal

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charts are presented of the seasonal variations in the distribution of four phytoplankton and five zooplankton taxa in the North Atlantic and the North Sea. The main factors determining the seasonal variations appear to be the distribution of the main overwintering stocks, the current system and, in some instances, temperature control of the rate of population increase. Information is presented about the variation with latitude (over the range from 34° N to 65 ° N) of the seasonal regime of the plankton. On the assumption that there is a relationship between nutrient supply and vertical temperature stratification the main features of this variability can be interpreted. In the south (to about 43° N) nutrient limitation plus grazing appear to be dominant, resulting in a bimodal seasonal cycle of phytoplankton. North of about 60° N the system appears to be limited by the size of the phytoplankton stocks being grazed primarily by Calanus Finmarchicus and Euphausiacea. In an extensive zone, from about 44° N to 60° N, it would appear that the spring bloom of phytoplankton is under-exploited by grazing while in summer the zooplankton graze the daily production of the phytoplankton, the stocks of which are probably maintained by in situ nutrient regeneration. The implications, for at least this mid-latitude zone, that rates and fluxes of processes, as opposed to density dependent interactions between stocks, play a major role in the dynamics of the seasonal cycle is consistent with previously reported observations suggesting that physical environmental factors play a major role in determining year-to-year fluctuations in the abundance of the plankton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic biomass size spectra (BSS) and normalized biomass size spectra were constructed, and benthic secondary production was estimated by a size spectrum equation in the shallow waters in the East China Sea, ranging latitudinally from 40A degrees N to 29A degrees N. The BSS patterns were bimodal, two biomass peaks corresponding to meiofauna and macrofauna, respectively, separated by a trough of low biomass at 8-256 mu g individual dry weight which varied in position with median sediment particle size. The BSS also displayed bimodality within meiofauna size ranges, which in most stations was due to the relative proportions of nematodes and other meiofauna taxa. Re-analysis of data from sites in the UK, South Africa, and Antarctic showed a similar bimodality in the adult species body size distribution within the meiofauna size range. Macrofaunal production estimated by the size spectrum equation was very similar to the results of Brey90 empirical equation. However, these production values were much lower than those calculated by Brey01. Different individual dry-to-wet conversion ratios, temperature deviation, and macrofauna taxonomic composition might be responsible for the between-model differences. The macrofaunal P/B ratios calculated by this equation ranged from 0.3 to 3.4 which were in accordance with values from Northern Hemisphere mid-latitudes. Meiofaunal production estimates will need further empirical support.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Species size distributions for metazoan benthic invertebrates conform to the highly conservative bimodal pattern, regardless of the sieve mesh sizes or numbers of sieves used in their extraction. This pattern is not an artefact of sampling a size continuum as suggested by computer simulations using just 2 fixed mesh sizes in Bett (2013; Mar Ecol Prog Ser 487:1-6). Meiobenthos and macrobenthos are coherent entities, each with a distinct suite of functional attributes, and should not be regarded as a single unit for ecological modelling purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nano- and picoplankton community at Station L4 in the Western English Channel was studied between 2007 and 2013 by flow cytometry to quantify abundance and investigate seasonal cycles within these communities. Nanoplankton included both photosynthetic and heterotrophic eukaryotic single-celled organisms while the picoplankton included picoeukaryote phytoplankton, Synechococcus sp. cyanobacteria and heterotrophic bacteria. A Box–Jenkins Transfer Function climatology analysis of surface data revealed that Synechococcus sp., cryptophytes, and heterotrophic flagellates had bimodal annual cycles. Nanoeukaryotes and both high and low nucleic acid-containing bacteria (HNA and LNA, respectively) groups exhibited unimodal annual cycles. Phaeocystis sp., whilst having clearly defined abundance maxima in spring was not detectable the rest of the year. Coccolithophores exhibited a weak seasonal cycle, with abundance peaks in spring and autumn. Picoeukaryotes did not exhibit a discernable seasonal cycle at the surface. Timings of maximum group abundance varied through the year. Phaeocystis sp. and heterotrophic flagellates peaked in April/May. Nanoeukaryotes and HNA bacteria peaked in June/July and had relatively high abundance throughout the summer. Synechococcus sp., cryptophytes and LNA bacteria all peaked from mid to late September. The transfer function model techniques used represent a useful means of identifying repeating annual cycles in time series data with the added ability to detect trends and harmonic terms at different time scales from months to decades.