2 resultados para Bible and geology
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Coccolithophorids are enigmatic plankton that produce calcium carbonate coccoliths, which over geological time have buried atmospheric CO2 into limestone, changing both the atmosphere and geology of the Earth. However, the role of coccoliths for the proliferation of these organisms remains unclear; suggestions include roles in anti-predation, enhanced photosynthesis and sun-screening. Here we test the hypothesis that calcification stabilizes the pH of the seawater proximate to the organisms, providing a level of acidification countering the detrimental basification that occurs during net photosynthesis. Such bioengineering provides a more stable pH environment for growth and fits the empirical evidence for changes in rates of calcification under different environmental conditions. Under this scenario, simulations suggest that the optimal production ratio of inorganic to organic particulate C (PIC : POCprod) will be lower (by approx. 20%) with ocean acidification and that overproduction of coccoliths in a future acidified ocean, where pH buffering is weaker, presents a risk to calcifying cells.
Resumo:
Coccolithophorids are enigmatic plankton that produce calcium carbonate coccoliths, which over geological time have buried atmospheric CO2 into limestone, changing both the atmosphere and geology of the Earth. However, the role of coccoliths for the proliferation of these organisms remains unclear; suggestions include roles in anti-predation, enhanced photosynthesis and sun-screening. Here we test the hypothesis that calcification stabilizes the pH of the seawater proximate to the organisms, providing a level of acidification countering the detrimental basification that occurs during net photosynthesis. Such bioengineering provides a more stable pH environment for growth and fits the empirical evidence for changes in rates of calcification under different environmental conditions. Under this scenario, simulations suggest that the optimal production ratio of inorganic to organic particulate C (PIC : POCprod) will be lower (by approx. 20%) with ocean acidification and that overproduction of coccoliths in a future acidified ocean, where pH buffering is weaker, presents a risk to calcifying cells.