2 resultados para Automobiles for the physically handicapped.
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Situated in an oceanographic transition zone, the Gulf of Maine/Western Scotian Shelf (GOM/WSS) region of the Northwest Atlantic is especially susceptible to changes in the climate system. Recent studies have shown that a coupled slope water system (CSWS) operates in the Northwest Atlantic and responds in a similar manner to climatic forcing over a broad range of time scales. These studies further suggest that it may be possible to associate different modes of the CSWS with the different phases of the North Atlantic Oscillation (NAO). Results from recent GLOBEC field studies in the Northwest Atlantic provide strong evidence linking physical responses of the CSWS to basin-scale forcing associated with the NAO. By placing these results in the context of time-series data collected from the GOM/WSS over the past half century, we show that we show that: (i) the region’s shelf ecosystems respond both physically and biologically to modal shifts in the CSWS; (ii) the CSWS mediates the effects on these ecosystems of basin-scale climatic forcing associated with the NAO and (iii) certain planktonic species can be good indicators of the CSWS’s modal state on inter-annual to interdecadal time scales.
Resumo:
There is an accumulating body of evidence to suggest that many marine ecosystems in the North Atlantic, both physically and biologically are responding to changes in regional climate caused predominately by the warming of air and sea surface temperatures (SST) and to a varying degree by the modification of oceanic currents, precipitation regimes and wind patterns. The biological manifestations of rising SST and oceanographic changes have variously taken the form of biogeographical, phenological, physiological and community changes. For example, during the last 40 years there has been a northerly movement of warmer water plankton by 10 degree latitude in the north-east Atlantic and a similar retreat of colder water plankton to the north. This geographical movement is much more pronounced than any documented terrestrial study, presumably due to advective processes playing an important role. Other research has shown that the plankton community in the North Sea has responded to changes in SST by adjusting their seasonality (in some cases a shift in seasonal cycles of over six weeks has been detected), but more importantly the response to climate warming varied between different functional groups and trophic levels, leading to mismatch. Therefore, while it has been documented that marine ecosystems in certain regions of the Atlantic have undergone some conspicuous changes over the last few decades it is not known whether this is a pan-oceanic homogenous response. Using these two most prominent responses and/or indicative signals of pelagic ecosystems to hydro-climatic change, changes in species phenology and the biogeographical movement of populations, we attempt to identify vulnerable regional areas in terms of particularly rapid and marked change.