40 resultados para Atmospheric correction
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The intensity and location of Sun glint in two Medium Resolution Imaging Spectrometer (MERIS) images was modeled using a radiative transfer model that includes elevation features as well as the slope of the sea surface. The results are compared to estimates made using glint flagging and correction approaches used within standard atmospheric correction processing code. The model estimate gives a glint pattern with a similar width but lower peak level than any current method, or than that estimated by a radiative transfer model with surfaces that include slope but not height. The MERIS third reprocessing recently adopted a new slope statistics model for Sun glint correction; the results show that this model is an outlier with respect to both the elevation model and other slope statistics models and we recommend that its adoption should be reviewed.
Resumo:
Satellite ocean-colour sensors have life spans lasting typically five-to-ten years. Detection of long-term trends in chlorophyll-a concentration (Chl-a) using satellite ocean colour thus requires the combination of different ocean-colour missions with sufficient overlap to allow for cross-calibration. A further requirement is that the different sensors perform at a sufficient standard to capture seasonal and inter-annual fluctuations in ocean colour. For over eight years, the SeaWiFS, MODIS-Aqua and MERIS ocean-colour sensors operated in parallel. In this paper, we evaluate the temporal consistency in the monthly Chl-a time-series and in monthly inter-annual variations in Chl-a among these three sensors over the 2002–2010 time period. By subsampling the monthly Chl-a data from the three sensors consistently, we found that the Chl-a time-series and Chl-a anomalies among sensors were significantly correlated for >90% of the global ocean. These correlations were also relatively insensitive to the choice of three Chl-a algorithms and two atmospheric-correction algorithms. Furthermore, on the subsampled time-series, correlations between Chl-a and time, and correlations between Chl-a and physical variables (sea-surface temperature and sea-surface height) were not significantly different for >92% of the global ocean. The correlations in Chl-a and physical variables observed for all three sensors also reflect previous theories on coupling between physical processes and phytoplankton biomass. The results support the combining of Chl-a data from SeaWiFS, MODIS-Aqua and MERIS sensors, for use in long-term Chl-a trend analysis, and highlight the importance of accounting for differences in spatial sampling among sensors when combining ocean-colour observations.