4 resultados para Artificial satellites in search and rescue operations.
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Coastal defences are proliferating in response to climate change, leading to the creation of more vertical substrata. Efforts are being made to mitigate their impacts and create novel habitats to promote biodiversity. Little is known about the effect of aspect (i.e. north–south directionality) and inclination on intertidal biodiversity in artificial habitats. Artificial and natural habitats were compared to assess the role of aspect and substratum inclination in determining patterns of biodiversity at two tidal heights (high and mid). We also compared grazing activity between north- and south-facing surfaces in natural habitats to examine the potential for differential grazing pressure to affect community structure and functioning. Results were variable but some clear patterns emerged. Inclination had no effect on biodiversity or abundance. There was a general trend towards greater taxon richness and abundance on north-facing than south-facing substrata in natural and artificial habitats. On natural shores, the abundance and grazing activity of ‘southern’ limpets (i.e. Patella depressa) was greater on south-facing than north-facing substrata, with possible implications for further range-expansion. These results highlight the importance of incorporating shaded habitats in the construction of artificial habitats. These habitats may represent an important refuge from grazing pressure and thermal and desiccation stress in a warming climate.
Resumo:
Coastal defences are proliferating in response to climate change, leading to the creation of more vertical substrata. Efforts are being made to mitigate their impacts and create novel habitats to promote biodiversity. Little is known about the effect of aspect (i.e. north–south directionality) and inclination on intertidal biodiversity in artificial habitats. Artificial and natural habitats were compared to assess the role of aspect and substratum inclination in determining patterns of biodiversity at two tidal heights (high and mid). We also compared grazing activity between north- and south-facing surfaces in natural habitats to examine the potential for differential grazing pressure to affect community structure and functioning. Results were variable but some clear patterns emerged. Inclination had no effect on biodiversity or abundance. There was a general trend towards greater taxon richness and abundance on north-facing than south-facing substrata in natural and artificial habitats. On natural shores, the abundance and grazing activity of ‘southern’ limpets (i.e. Patella depressa) was greater on south-facing than north-facing substrata, with possible implications for further range-expansion. These results highlight the importance of incorporating shaded habitats in the construction of artificial habitats. These habitats may represent an important refuge from grazing pressure and thermal and desiccation stress in a warming climate.
Resumo:
Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator’s fine-scale behaviour observed over a two weeks in May 2014.
Resumo:
Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator’s fine-scale behaviour observed over a two weeks in May 2014.