17 resultados para Aquatic biology--Ontario--Found Lake.
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
This study describes a new genus Dystomanema gen. nov. with two new species, D. cadizensis sp. nov. and D. brandtae sp. nov. within the family Ethmolaimidae, subfamily Neotonchinae, based on specimens from two low-activity cold-seep environments at distant geographical locations. The new genus was first identified in samples from the Darwin mud volcano (1100 m depth) in the Gulf of Cadiz and later on also found in samples from a low-activity seep in the Larsen B embayment (820m depth) off the eastern Antarctic Peninsula. Until now, the family Ethmolaimidae contained nine genera: Ethmolaimus and Paraethmolaimus in the subfamily Ethmolaiminae, and Comesa, Filitonchoides, Filitonchus, Gomphionchus, Gomphionema, Nannolaimus, and Neothonchus in the subfamily Neotonchinae. The most important family characteristics are: an annulated cuticle bearing transverse rows of dots, cephalic sensilla arrangement of 6+6+4, a spiral amphid, an oesophagus with muscular posterior bulb, paired gonads and males with cup-shaped precloacal supplements. The new genus resembles Comesa and Neotonchus, but is typified by a ventrally displaced oral opening with three very small teeth that are easily overlooked. D. cadizensis gen. nov. sp. nov. is characterized by the 1401-2123 mu m long body; cuticle transversally striated with fine punctation; head conical; low lips; amphid spiralled 3 turns, oral opening ventrally displaced, male with outstretched testes; spicules of equal size; gubernaculum plate-like and ten to twelve conspicuous cup-shaped precloacal supplements with external longitudinal articulated flange. D. brandtae gen. nov. sp. nov. can be distinguished by the 2438-3280 mu m long body; cuticle transversally striated with fine punctuation; head conical; low lips; amphid spiraled 3+ turns; oral opening ventrally displaced; male with anterior testes outstretched and posterior one smaller and reflexed; spicules of equal size; gubernaculum plate-like and twenty conspicuous cup-shaped precloacal supplements with external longitudinal articulated flange. Notes on the ecology and habitat of the new genus are provided in light of its discovery in cold-seep environments.
Resumo:
Many marine habitats, such as the surface and tissues of marine invertebrates, including corals, harbour diverse populations of microorganisms, which are thought to play a role in the health of their hosts and influence mutualistic and competitive interactions. Investigating the presence and stability of quorum sensing (QS) in these ecosystems may shed light on the roles and control of these bacterial communities. Samples of 13 cnidarian species were screened for the presence and diversity of N-acyl-homoserine lactones (AHLs; a prevalent type of QS molecule) using thin-layer chromatography and an Agrobacterium tumefaciens NTL4 biosensor. Ten of 13 were found to harbour species-specific, conserved AHL profiles. AHLs were confirmed in Anemonia viridis using liquid chromatography tandem mass spectrometry. To assess temporal role and stability, AHLs were investigated in A. viridis from intertidal pools over 16 h. Patterns of AHLs showed conserved profiles except for two mid-chain length AHLs, which increased significantly over the day, peaking at 20:00, but had no correlation with pool chemistry. Denaturing gel electrophoresis of RT-PCR-amplified bacterial 16S rRNA showed the presence of an active bacterial community that changed in composition alongside AHL profiles and contained a number of bands that affiliate with known AHL-producing bacteria. Investigations into the quorum sensing-controlled, species-specific roles of these bacterial communities and how these regulatory circuits are influenced by the coral host and members of the bacterial community are imperative to expand our knowledge of these interactions with respect to the maintenance of coral health.
Resumo:
Current knowledge about the spread of pathogens in aquatic environments is scarce probably because bacteria, viruses, algae and their toxins tend to occur at low concentrations in water, making them very difficult to measure directly. The purpose of this study was the development and validation of tools to detect pathogens in freshwater systems close to an urban area. In order to evaluate anthropogenic impacts on water microbiological quality, a phylogenetic microarray was developed in the context of the EU project µAQUA to detect simultaneously numerous pathogens and applied to samples from two different locations close to an urban area located upstream and downstream of Rome in the Tiber River. Furthermore, human enteric viruses were also detected. Fifty liters of water were collected and concentrated using a hollow-fiber ultrafiltration approach. The resultant concentrate was further size-fractionated through a series of decreasing pore size filters. RNA was extracted from pooled filters and hybridized to the newly designed microarray to detect pathogenic bacteria, protozoa and toxic cyanobacteria. Diatoms as indicators of the water quality status, were also included in the microarray to evaluate water quality. The microarray results gave positive signals for bacteria, diatoms, cyanobacteria and protozoa. Cross validation of the microarray was performed using standard microbiological methods for the bacteria. The presence of oral-fecal transmitted human enteric-viruses were detected using q-PCR. Significant concentrations of Salmonella, Clostridium, Campylobacter and Staphylococcus as well as Hepatitis E Virus (HEV), noroviruses GI (NoGGI) and GII (NoGII) and human adenovirus 41 (ADV 41) were found in the Mezzocammino site, whereas lower concentrations of other bacteria and only the ADV41 virus was recovered at the Castel Giubileo site. This study revealed that the pollution level in the Tiber River was considerably higher downstream rather than upstream of Rome and the downstream location was contaminated by emerging and re-emerging pathogens.