13 resultados para Appendicularia, fecal pellet carbon flux

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The North Atlantic Oscillation (NAO) is a major mode of variability in the North Atlantic, dominating atmospheric and oceanic conditions. Here, we examine the phytoplankton community-structure response to the NAO using the Continuous Plankton Recorder data set. In the Northeast Atlantic, in the transition region between the gyres, variability in the relative influence of subpolar or subtropical-like conditions is reflected in the physical environment. During positive NAO periods, the region experiences subpolar-like conditions, with strong wind stress and deep mixed layers. In contrast, during negative NAO periods, the region shifts toward more subtropical-like conditions. Diatoms dominate the phytoplankton community in positive NAO periods, whereas in negative NAO periods, dinoflagellates outcompete diatoms. The implications for interannual variability in deep ocean carbon flux are examined using data from the Porcupine Abyssal Plain time-series station. Contrary to expectations, carbon flux to 3000 m is enhanced when diatoms are outcompeted by other phytoplankton functional types. Additionally, highest carbon fluxes were not associated with an increase in biomineral content, which implies that ballasting is not playing a dominant role in controlling the flux of material to the deep ocean in this region. In transition zones between gyre systems, phytoplankton populations can change in response to forcing induced by opposing NAO phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very large pulses of particulate organic matter intermittently sink to the deep waters of the open ocean in the Northeast Atlantic. These pulses, measured by moored sediment traps since 1989, can contribute up to 60% of the organic flux to 3000 m in a particular year and are thus a major cause of the variability in carbon sequestration from the atmosphere in the region. Pulses occur in the late summer and are characterized by material that is very rich in organic carbon but with low concentrations of the biominerals opal and calcite. A number of independent lines of evidence have been examined to determine the causes of these pulses: (1) Data from the Continuous Plankton Recorder (CPR) survey show that in this region, radiolarian protozoans intermittently reach high abundances in the late summer just preceding organic pulses to depth. (2) CPR data also show that the interannual variability in radiolarian abundance since 1997 mirrors very closely the variability of deep ocean organic deposition. (3) The settling material collected in the traps displays a strong correlation between fecal pellets produced by radiolaria and the measured organic carbon flux. These all suggest that the pulses are mediated by radiolarians, a group of protozoans found throughout the world’s oceans and which are widely used by paleontologists to determine past climate conditions. Changes in the upper ocean community structure (between years and on longer timescales) may have profound effects on the ability of the oceans to sequester carbon dioxide from the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (similar to 50 %) and their calcification can affect the atmosphere-to-ocean (air-sea) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO(2)). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998-2007), using Earth observation data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). We calculate the annual mean sea surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 +/- 104 000 km(2), which results in a net CaCO3 carbon (CaCO3-C) production of 0.14-1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production) can fluctuate inter-annually by -54/+81% about the mean value and is strongly correlated with the El Nino/Southern Oscillation (ENSO) climate oscillation index (r = 0.75, p < 0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO(2) and, thus, decrease the localised air-sea flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly air-sea CO2 flux can reach 55%. The maximum reduction of the monthly air-sea CO2 flux in the time series is 155 %. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO(2) should be considered if we are to fully understand the variability of the North Atlantic air-to-sea flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3-28 %.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acantharian cysts were discovered in sediment trap samples from spring 2007 at 2000 m in the Iceland Basin. Although these single-celled organisms contribute to particulate organic matter flux in the upper mesopelagic, their contribution to bathypelagic particle flux has previously been found negligible. Four time-series sediment traps were deployed and all collected acantharian cysts, which are reproductive structures. Across all traps, cysts contributed on average 3-22%, and 4―24% of particulate organic carbon and nitrogen (POC and PON) flux, respectively, during three separate collection intervals (the maximum contribution in any one trap was 48% for POC and 59% for PON). Strontium (Sr) flux during these 6 weeks reached 3 mg m―2 d―1. The acantharian celestite (SrSO4) skeleton clearly does not always dissolve in the mesopelagic as often thought, and their cysts can contribute significantly to particle flux at bathypelagic depths during specific flux events. Their large size (∼ I mm) and mineral ballast result in a sinking rate of ∼ 500 m d―1; hence, they reach the bathypelagic before dissolving. Our findings are consistent with a vertical profile of salinity-normalized Sr concentration in the Iceland Basin, which shows a maximum at 1700 m. Profiles of salinity-normalized Sr concentration in the subarctic Pacific reach maxima at ≤ 1500 m, suggesting that Acantharia might contribute to the bathypelagic particle flux there as well. We hypothesize that Acantharia at high latitudes use rapid, deep sedimentation of reproductive cysts during phytoplankton blooms so that juveniles can exploit the large quantity of organic matter that sinks rapidly to the deep sea following a bloom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite its fundamental role in controlling the Earth's climate, present estimates of global organic carbon export to the deep sea are affected by relatively large uncertainties. These uncertainties are due to lack of observations as well as disagreement among methods and assumptions used to estimate carbon export. Complementary observations are thus needed to reduce these uncertainties. Here we show that optical backscattering measured by Bio-Argo floats can detect a seasonal carbon export flux in the Norwegian Sea. This export was most likely due to small particles (i.e., 0.2–20 μm), was comparable to published export values, and contributed to long-term carbon sequestration. Our findings highlight the importance of small particles and of physical mixing in the biological carbon pump and support the use of autonomous platforms as tools to improve our mechanistic understanding of the ocean carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of ~6 Pg C yr−1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.