2 resultados para Antenna

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absorption and fluorescence properties of chlorosomes of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001 were analyzed. The chlorosome antenna of Chloronema consists of bacteriochlorophyll (BChl) d and BChl c together with γ-carotene as the main carotenoid. HPLC analysis combined with APCI LC-MS/MS showed that the chlorosomal BChls comprise a highly diverse array of homologues that differ in both the degree of alkylation of the macrocycle at C-8 and/or C-12 and the alcohol moiety esterified to the propionic acid group at C-17. BChl c and BChl d from Chloronema were mainly esterified with geranylgeraniol (33% of the total), heptadecanol (24%), octadecenol (19%), octadecanol (14%), and hexadecenol (9%). Despite this pigment heterogeneity, fluorescence emission of the chlorosomes showed a single peak centered at 765 nm upon excitation at wavelengths ranging from 710 to 740 nm. This single emission, assigned to BChl c, indicates an energy transfer from BChl d to BChl c within the same chlorosome. Likewise, incubation of chlorosomes under reducing conditions caused a weak increase in fluorescence emission, which indicates a small redox-dependent fluorescence. Finally, protein analysis of Chloronema chlorosomes using SDS-PAGE and MALDI-TOF-MS revealed the presence of a chlorosomal polypeptide with a molecular mass of 5.7 kDa, resembling the CsmA protein found in Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes. Several minor polypeptides were also detected but not identified. These results indicate that, compared with other members of filamentous anoxygenic phototrophic bacteria and green sulfur bacteria, Chloronema possesses an antenna system with novel features that may be of interest for further investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two key players in the Arctic and subarctic marine ecosystem are the calanoid copepods, Calanus finmarchicus and C. glacialis. Although morphologically very similar, these sibling species have different life cycles and roles in the Arctic pelagic marine ecosystem. Considering that the distribution of C. glacialis corresponds to Arctic water masses and C. finmarchicus to Atlantic water masses, the species are frequently used as climate indicators. Consequently, correct identification of the two species is essential if we want to understand climate-impacted changes on Calanus-dominated marine ecosystems such as the Arctic. Here, we present a novel morphological character (redness) to distinguish live females of C. glacialis and C. finmarchicus and compare it to morphological (prosome length) and genetic identification. The characters are tested on 300 live females of C. glacialis and C. finmarchicus from Disko Bay, western Greenland. Our analysis confirms that length cannot be used as a stand-alone criterion for separation. The results based on the new morphological character were verified genetically using a single mitochondrial marker (16S) and nuclear loci (six microsatellites and 12 InDels). The pigmentation criterion was also used on individuals (n = 89) from Young Sound fjord, northeast Greenland to determine whether the technique was viable in different geographical locations. Genetic markers based on mitochondrial and nuclear loci were corroborative in their identification of individuals and revealed no hybrids. Molecular identification confirmed that live females of the two species from Greenlandic waters, both East and West, can easily be separated by the red pigmentation of the antenna and somites of C. glacialis in contrast to the pale opaque antenna and somites of C. finmarchicus, confirming that the pigmentation criterion is valid for separation of the two species