8 resultados para Agricultural ecology (General)
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The Bulletins in this volume, except the last, deal entirely with the results of this expanded survey of 1938 and 1939. They show for the first time, month by month, the main changes in the plankton over practically the whole of the North Sea for a year and eight months. They form an important basis for comparison with the results of the post-war survey, revived on an even more extensive scale and to be described in later volumes.
Resumo:
One of the most of challenging steps in the development of coupled hydrodynamic-biogeochemical models is the combination of multiple, often incompatible computer codes that describe individual physical, chemical, biological and geological processes. This “coupling” is time-consuming, error-prone, and demanding in terms of scientific and programming expertise. The open source, Fortran-based Framework for Aquatic Biogeochemical Models addresses these problems by providing a consistent set of programming interfaces through which hydrodynamic and biogeochemical models communicate. Models are coded once to connect to FABM, after which arbitrary combinations of hydrodynamic and biogeochemical models can be made. Thus, a biogeochemical model code works unmodified within models of a chemostat, a vertically structured water column, and a three-dimensional basin. Moreover, complex biogeochemistry can be distributed over many compact, self-contained modules, coupled at run-time. By enabling distributed development and user-controlled coupling of biogeochemical models, FABM enables optimal use of the expertise of scientists, programmers and end-users.
Resumo:
The decisions animals make about how long to wait between activities can determine the success of diverse behaviours such as foraging, group formation or risk avoidance. Remarkably, for diverse animal species, including humans, spontaneous patterns of waiting times show random ‘burstiness’ that appears scale-invariant across a broad set of scales. However, a general theory linking this phenomenon across the animal kingdom currently lacks an ecological basis. Here, we demonstrate from tracking the activities of 15 sympatric predator species (cephalopods, sharks, skates and teleosts) under natural and controlled conditions that bursty waiting times are an intrinsic spontaneous behaviour well approximated by heavy-tailed (power-law) models over data ranges up to four orders of magnitude. Scaling exponents quantifying ratios of frequent short to rare very long waits are species-specific, being determined by traits such as foraging mode (active versus ambush predation), body size and prey preference. A stochastic–deterministic decision model reproduced the empirical waiting time scaling and species-specific exponents, indicating that apparently complex scaling can emerge from simple decisions. Results indicate temporal power-law scaling is a behavioural ‘rule of thumb’ that is tuned to species’ ecological traits, implying a common pattern may have naturally evolved that optimizes move–wait decisions in less predictable natural environments.
Resumo:
Coastal processes and wildlife shape the coast into a variety of eye-catching and enticing landforms that attract people to marvel at, relax and enjoy coastal geomorphology. These landforms also influence biological communities by providing habitat and refuge. There are very few field guides to explain these processes to the general public and children. In contrast, there is a relative wealth of resources and organised activities introducing people to coastal wildlife, especially on rocky shores. These biological resources typically focus on the biology and climatic controls on their distribution, rather than how the biology interacts with its physical habitat. As an outcome of two recent rock coast biogeomorphology projects (detailed at: www.biogeomorph.org/coastal) a multi disciplinary team produced the first known guide to understanding how biogeomorphological processes help create coastal landforms. The ‘Shore Shapers’ guide (shoreshapers.org) is designed to: a. bring biotic geomorphic interactions (how animals, algae and microorganisms protect and shape rock) to life and b. introduce some of the geomorphological and geological controls on biogeomorphic processes and landform development. The guide provides scientific information in an accessible and interactive way – to help sustain children’s interest and extend their learning. We tested a draft version of the guide with children,the general public and volunteers on rocky shore rambles using social science techniques and present the findings, alongside initial results of an evaluation of a newer version of the guide and interactive workshops taking place throughout 2014.
Resumo:
Temperate reefs are superb tractable systems for testing hypotheses in ecology and evolutionary biology. Accordingly there is a rich history of research stretching back over 100 years, which has made major contributions to general ecological and evolutionary theory as well as providing better understanding of how littoral systems work by linking pattern with process. A brief resumé of the history of temperate reef ecology is provided to celebrate this rich heritage. As a community, temperate reef ecologists generally do well designed experiments and test well formulated hypotheses. Increasingly large datasets are being collected, collated and subjected to complex meta-analyses and used for modelling. These datasets do not happen spontaneously – the burgeoning subject of macroecology is possible only because of the efforts of dedicated natural historians whether it be observing birds, butterflies, or barnacles. High-quality natural history and old-fashioned field craft enable surveys or experiments to be stratified (i.e. replicates are replicates and not a random bit of rock) and lead to the generation of more insightful hypotheses. Modern molecular approaches have led to the discovery of cryptic species and provided phylogeographical insights, but natural history is still required to identify species in the field. We advocate a blend of modern approaches with old school skills and a fondness for temperate reefs in all their splendour.
Resumo:
Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. However, with the recent adoption of more explorative tools, like Bayesian networks, in predictive ecology, few assumptions can be made about the data and complex, spatially varying interactions can be recovered from collected field data. In this study, we compare Bayesian network modelling approaches accounting for latent effects to reveal species dynamics for 7 geographically and temporally varied areas within the North Sea. We also apply structure learning techniques to identify functional relationships such as prey–predator between trophic groups of species that vary across space and time. We examine if the use of a general hidden variable can reflect overall changes in the trophic dynamics of each spatial system and whether the inclusion of a specific hidden variable can model unmeasured group of species. The general hidden variable appears to capture changes in the variance of different groups of species biomass. Models that include both general and specific hidden variables resulted in identifying similarity with the underlying food web dynamics and modelling spatial unmeasured effect. We predict the biomass of the trophic groups and find that predictive accuracy varies with the models' features and across the different spatial areas thus proposing a model that allows for spatial autocorrelation and two hidden variables. Our proposed model was able to produce novel insights on this ecosystem's dynamics and ecological interactions mainly because we account for the heterogeneous nature of the driving factors within each area and their changes over time. Our findings demonstrate that accounting for additional sources of variation, by combining structure learning from data and experts' knowledge in the model architecture, has the potential for gaining deeper insights into the structure and stability of ecosystems. Finally, we were able to discover meaningful functional networks that were spatially and temporally differentiated with the particular mechanisms varying from trophic associations through interactions with climate and commercial fisheries.