12 resultados para Agricultural cooperative credit associations
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The distribution of dissolved, soluble and colloidal fractions of Al and Ti was assessed by ultrafiltration studies in the upper water column of the eastern tropical North Atlantic. The dissolved fractions of both metals were found to be dominated by the soluble phase smaller than 10 kDa. The colloidal associations were very low (0.2–3.4%) for Al and not detectable for Ti. These findings are in some contrast to previous estimations for Ti and to the predominant occurrence of both metals as hydrolyzed species in seawater. However, low tendencies to form inorganic colloids can be expected, as in seawater dissolved Al and dissolved Ti are present within their inorganic solubility levels. In addition, association with functional organic groups in the colloidal phase is unlikely for both metals. Vertical distributions of the dissolved fractions showed surface maxima with up to 43 nM of Al and 157 pM of Ti, reflecting their predominant supply from atmospheric sources to the open ocean. In the surface waters, excess dissolved Al over dissolved Ti was present compared to the crustal source, indicating higher solubility and thus elevated inputs of dissolved Al from atmospheric mineral particles. At most stations, subsurface minima of Al and Ti were observed and can be ascribed to scavenging processes and/or biological uptake. The dissolved Al concentrations decreased by 80–90% from the surface maximum to the subsurface minimum. Estimated residence times in the upper 100 m of the water column ranged between 1.6 and 4 years for dissolved Al and between 14 and 17 years for dissolved Ti. The short residence times are in some contrast to the low colloidal associations of Al and Ti and the assumed role of colloids as intermediates in scavenging processes. This suggests that either the removal of both metals occurs predominantly via direct transfer of the hydrolyzed species into the particulate fraction or that the colloidal phase is rapidly turned over in the upper water column.
Resumo:
Coastal zooplankton have been investigated since 1984 at a Long Term Ecological Research station MC (LTER-MC) in the inner Gulf of Naples (Tyrrhenian Sea, Western Mediterranean). The sampling site, located between the littoral and the open sea systems, has very active hydrography that affects plankton communities. The present work was aimed at establishing whether, in such a dynamic and variable environment, species associations and homogeneous periods could be identified as characteristic and stable features of the mesozooplankton over the period 1984–2006. Hierarchical clustering was applied to assess species associations based on a matrix of similarities between species (R-mode), and homogeneous periods based on a matrix of similarities between observations (Q-mode). The Indicator Value index [IndVal, Dufrene and Legendre (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366] was calculated to identify species characterizing each period. Five taxonomic groups with well-defined composition and abundance were identified as robust associations that likely reflect different modes of community functioning. The temporal course of these associations was largely shaped by strong seasonal forcing comprising both physical and biological (e.g. trophic) signals. These associations persisted over the long term, thus indicating some stable characters in the Naples zooplankton time-series, providing evidence of resilience in communities in highly variable coastal conditions.
Resumo:
In conjunction with the North Pacific Continuous Plankton Recorder program, we conducted surveys of seabirds from June 2002 to June 2007. Here, we tested the hypotheses of (i) east–west variations in coupled plankton and seabird abundance, and (ii) that surface-feeding and diving seabirds vary in their relationships to primary productivity and mesozooplankton species abundance and diversity. To test these hypotheses, we developed statistical models for 20 species of seabirds and 12 zooplankton taxonomic groups. Seabird density was highly variable between seasons, but was consistently higher in the western than eastern North Pacific. Seabird diversity was greater in the east. Zooplankton abundance did not differ between regions. We found associations at the “bulk” level between seabird density and net primary productivity, but only one association between seabirds and total zooplankton abundance or diversity. However, we found many relationships between seabird species and the abundance of different zooplankton summarized at the genus or family level. Some of these taxonomic relationships reflect direct predator–prey interactions, while others may reflect zooplankton that serve as ecological indicators of other prey, such as micronekton, upon which the birds may feed. Surface or near-surface feeding, mostly piscivorous seabirds, did not differ systematically from diving, mainly planktivorous seabirds in their zooplankton associations. Seabirds apparently respond to zooplankton taxonomic groupings more so than bulk zooplankton characteristics, such as abundance or diversity. Macro-ecological studies of remote marine ecosystems using zooplankton and seabirds as ecological indicators provide a framework for understanding and assessing spatial and temporal variations in these difficult-to-study pelagic environments.
Resumo:
The deep sea is Earth’s largest habitat but little is known about the nature of deep-sea parasitism. In contrast to a few characterized cases of bacterial and protistan parasites, the existence and biological significance of deep-sea parasitic fungi is yet to be understood. Here we report the discovery of a fungus-related parasitic microsporidium, Nematocenator marisprofundi n. gen. n. sp. that infects benthic nematodes at Pacific Ocean methane seeps on the Pacific Ocean floor. This infection is species-specific and has been temporally and spatially stable over two years of sampling, indicating an ecologically consistent host-parasite interaction. A high distribution of spores in the reproductive tracts of infected males and females and their absence from host nematodes’ intestines suggests a sexual transmission strategy in contrast to the fecal-oral transmission of most microsporidia. N. marisprofundi targets the host’s body wall muscles causing cell lysis, and in severe infection even muscle filament degradation. Phylogenetic analyses placed N. marisprofundi in a novel and basal clade not closely related to any described microsporidia clade, suggesting either that microsporidia-nematode parasitism occurred early in microsporidia evolution or that host specialization occurred late in an ancient deep-sea microsporidian lineage. Our findings reveal that methane seeps support complex ecosystems involving interkingdom interactions between bacteria, nematodes, and parasitic fungi and that microsporidia parasitism exists also in the deep sea biosphere.
Resumo:
Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.
Resumo:
Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.
Resumo:
Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.
Resumo:
The rapid increase in the number of tidal stream turbine arrays will create novel and unprecedented levels of anthropogenic activity within habitats characterized by horizontal current speeds exceeding 2 ms−1. However, the potential impacts on pursuit‐diving seabirds exploiting these tidal stream environments remain largely unknown. Identifying similarities between the fine‐scale physical features (100s of metres) suitable for array installations, and those associated with foraging pursuit‐diving seabirds, could identify which species are most vulnerable to either collisions with moving components, or displacement from these installations. A combination of vessel‐based observational surveys, Finite Volume Community Ocean Model outputs and hydroacoustic seabed surveys provided concurrent measures of foraging distributions and physical characteristics at a fine temporal (15 min) and spatial (500 m) resolution across a tidal stream environment suitable for array installations, during both breeding and non‐breeding seasons. These data sets were then used to test for associations between foraging pursuit‐diving seabirds (Atlantic puffins Fratercula arctica, black guillemots Cepphus grylle, common guillemots Uria aalge, European shags Phalacrocorax aristotelis) and physical features. These species were associated with areas of fast horizontal currents, slow horizontal currents, high turbulence, downward vertical currents and also hard–rough seabeds. The identity and strength of associations differed among species, and also within species between seasons, indicative of interspecific and intraspecific variations in habitat use. However, Atlantic puffins were associated particularly strongly with areas of fast horizontal currents during breeding seasons, and European shags with areas of rough–hard seabeds and downward vertical currents during non‐breeding seasons. Synthesis and applications. Atlantic puffins’ strong association with fast horizontal current speeds indicates that they are particularly likely to interact with installations during breeding seasons. Any post‐installation monitoring and mitigation measures should therefore focus on this species and season. The multi‐species associations with high turbulence and downward vertical currents, which often coincide with fast horizontal current speeds, also highlight useful pre‐installation mitigation measures via the omission of devices from these areas, reducing the overall likelihood of interactions. Environmental impact assessments (EIA) generally involve once‐a‐month surveys across 2‐year periods. However, the approaches used in this study show that more focussed surveys can greatly benefit management strategies aiming to reduce the likelihood of negative impacts by facilitating the development of targeted mitigation measures. It is therefore recommended that these approaches contribute towards EIA within development sites.