13 resultados para Aerial photography and satellite imagery

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoplankton abundance in the NW Atlantic was measured by continuous plankton recorder (CPR) sampling along tracks between Iceland and the western Scotian Shelf from 1998 to 2006, when sea-surface chlorophyll (SSChl) measurements were also being made by ocean colour satellite imagery using the SeaWiFS sensor. Seasonal and inter-annual changes in phytoplankton abundance were examined using data collected by both techniques, averaged over each of four shelf regions and four deep ocean regions. CPR sampling had gaps (missing months) in all regions and in the four deep ocean regions satellite observations were too sparse between November and February to be of use. Average seasonal cycles of SSChl were similar to those of total diatom abundance in seven regions, to those of the phytoplankton colour index in six regions, but were not similar to those of total dinoflagellate abundance anywhere. Large inter-annual changes in spring bloom dynamics were captured by both samplers in shelf regions. Changes in annual (or 8 months) averages of SSChl did not generally follow those of the CPR indices within regions and multi-year averages of SSChl, and the three CPR indices were generally higher in shelf than in deep ocean regions. Remote sensing and CPR sampling provide complementary ways of monitoring phytoplankton in the ocean: the former has superior temporal and spatial coverage and temporal resolution, and the latter provides better taxonomic information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diatoms exist in almost every aquatic regime; they are responsible for 20% of global carbon fixation and 25% of global primary production, and are regarded as a key food for copepods, which are subsequently consumed by larger predators such as fish and marine mammals. A decreasing abundance and a vulnerability to climatic change in the North Atlantic Ocean have been reported in the literature. In the present work, a data matrix composed of concurrent satellite remote sensing and Continuous Plankton Recorder (CPR) in situ measurements was collated for the same spatial and temporal coverage in the Northeast Atlantic. Artificial neural networks (ANNs) were applied to recognize and learn the complex non-monotonic and non-linear relationships between diatom abundance and spatiotemporal environmental factors. Because of their ability to mimic non-linear systems, ANNs proved far more effective in modelling the diatom distribution in the marine ecosystem. The results of this study reveal that diatoms have a regular seasonal cycle, with their abundance most strongly influenced by sea surface temperature (SST) and light intensity. The models indicate that extreme positive SSTs decrease diatom abundances regardless of other climatic conditions. These results provide information on the ecology of diatoms that may advance our understanding of the potential response of diatoms to climatic change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From January 2011 to December 2013, we constructed a comprehensive pCO2 data set based on voluntary observing ship (VOS) measurements in the western English Channel (WEC). We subsequently estimated surface pCO2 and air–sea CO2 fluxes in northwestern European continental shelf waters using multiple linear regressions (MLRs) from remotely sensed sea surface temperature (SST), chlorophyll a concentration (Chl a), wind speed (WND), photosynthetically active radiation (PAR) and modeled mixed layer depth (MLD). We developed specific MLRs for the seasonally stratified northern WEC (nWEC) and the permanently well-mixed southern WEC (sWEC) and calculated surface pCO2 with uncertainties of 17 and 16 μatm, respectively. We extrapolated the relationships obtained for the WEC based on the 2011–2013 data set (1) temporally over a decade and (2) spatially in the adjacent Celtic and Irish seas (CS and IS), two regions which exhibit hydrographical and biogeochemical characteristics similar to those of WEC waters. We validated these extrapolations with pCO2 data from the SOCAT and LDEO databases and obtained good agreement between modeled and observed data. On an annual scale, seasonally stratified systems acted as a sink of CO2 from the atmosphere of −0.6 ± 0.3, −0.9 ± 0.3 and −0.5 ± 0.3 mol C m−2 yr−1 in the northern Celtic Sea, southern Celtic sea and nWEC, respectively, whereas permanently well-mixed systems acted as source of CO2 to the atmosphere of 0.2 ± 0.2 and 0.3 ± 0.2 mol C m−2 yr−1 in the sWEC and IS, respectively. Air–sea CO2 fluxes showed important inter-annual variability resulting in significant differences in the intensity and/or direction of annual fluxes. We scaled the mean annual fluxes over these provinces for the last decade and obtained the first annual average uptake of −1.11 ± 0.32 Tg C yr−1 for this part of the northwestern European continental shelf. Our study showed that combining VOS data with satellite observations can be a powerful tool to estimate and extrapolate air–sea CO2 fluxes in sparsely sampled area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing availability and extent of biological ocean time series (from both in situ and satellite data) have helped reveal significant phenological variability of marine plankton. The extent to which the range of this variability is modified as a result of climate change is of obvious importance. Here we summarize recent research results on phenology of both phytoplankton and zooplankton. We suggest directions to better quantify and monitor future plankton phenology shifts, including (i) examining the main mode of expected future changes (ecological shifts in timing and spatial distribution to accommodate fixed environmental niches vs. evolutionary adaptation of timing controls to maintain fixed biogeography and seasonality), (ii) broader understanding of phenology at the species and community level (e.g. for zooplankton beyond Calanus and for phytoplankton beyond chlorophyll), (iii) improving and diversifying statistical metrics for indexing timing and trophic synchrony and (iv) improved consideration of spatio-temporal scales and the Lagrangian nature of plankton assemblages to separate time from space changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-sensor satellite approach based on ocean colour, sunglint and Synthetic Aperture Radar imagery is used to study the impact of interacting internal tidal (IT) waves on near-surface chlorophyll-a distribution, in the central Bay of Biscay. Satellite imagery was initially used to characterize the internal solitary wave (ISW) field in the study area, where the “local generation mechanism” was found to be associated with two distinct regions of enhanced barotropic tidal forcing. IT beams formed at the French shelf-break, and generated from critical bathymetry in the vicinities of one of these regions, were found to be consistent with “locally generated” ISWs. Representative case studies illustrate the existence of two different axes of IT propagation originating from the French shelf-break, which intersect close to 46°N, − 7°E, where strong IT interaction has been previously identified. Evidence of constructive interference between large IT waves is then presented and shown to be consistent with enhanced levels of chlorophyll-a concentration detected by means of ocean colour satellite sensors. Finally, the results obtained from satellite climatological mean chlorophyll-a concentration from late summer (i.e. September, when ITs and ISWs can meet ideal propagation conditions) suggest that elevated IT activity plays a significant role in phytoplankton vertical distribution, and therefore influences the late summer ecology in the central Bay of Biscay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2s− 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements.