7 resultados para Acting.

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term research in the western English Channel, undertaken by the marine laboratories in Plymouth, is described and details of survey methods, sites, and time series given in this chapter. Major findings are summarized and their limitations outlined. Current research, with recent reestablishment and expansion of many sampling programmes, is presented, and possible future approaches are indicated. These unique long-term data sets provide an environmental baseline for predicting complex ecological responses to local, regional, and global environmental change. Between 1888 and the present, investigations have been carried out into the physical, chemical, and biological components (ranging from plankton and fish to benthic and intertidal assemblages) of the western English Channel ecosystem. The Marine Biological Association of the United Kingdom has performed the main body of these observations. More recent contributions come from the Continuous Plankton Recorder Survey, now the Sir Alister Hardy Foundation for Ocean Science, dating from 1957; the Institute for Marine Environmental Research, from 1974 to 1987; and the Plymouth Marine Laboratory, which was formed by amalgamation of the Institute for Marine Environmental Research and part of the Marine Biological Association, from 1988. Together, these contributions constitute a unique data series; one of the longest and most comprehensive samplings of environmental and marine biological variables in the world. Since the termination of many of these time series in 1987-1988 during a reorganisation of UK marine research, there has been a resurgence of interest in long-term environmental change. Many programmes have been restarted and expanded with support from several agencies. The observations span significant periods of warming (1921-1961; 1985-present) and cooling (1962-1980). During these periods of change, the abundance of key species underwent dramatic shifts. The first period of warming saw changes in zooplankton, pelagic fish, and larval fish, including the collapse of an important herring fishery. During later periods of change, shifts in species abundances have been reflected in other assemblages, such as the intertidal zone and the benthic fauna. Many of these changes appear to be related to climate, manifested as temperature changes, acting directly or indirectly. The hypothesis that climate is a forcing factor is widely supported today and has been reinforced by recent studies that show responses of marine organisms to climatic attributes such as the strength of the North Atlantic Oscillation. The long-term data also yield important insights into the effects of anthropogenic disturbances such as fisheries exploitation and pollution. Comparison of demersal fish hauls over time highlights fisheries effects not only on commercially important species but also on the entire demersal community. The effects of acute ("Torrey Canyon" oil spill) and chronic (tributyltin [TBT] antifoulants) pollution are clearly seen in the intertidal records. Significant advances in diverse scientific disciplines have been generated from research undertaken alongside the long-term data series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial patterns in pelagic biodiversity are the result of factors acting from a global to a local scale. The global patterns have been studied intensively using taxa such as foraminifera and euphausiids. However, these studies do not allow direct comparisons of neritic and oceanic regions or examination of relationships between local and regional patterns of pelagic diversity. Here we present a map of the diversity of calanoid copepods, a key planktonic group, summarising 40 yr of continuous monthly investigations in the North Atlantic and North Sea. The high number of samples (168 162) allowed mesoscale patterns in diversity to be detected for the first time at an ocean-basin level. Our results demonstrate pronounced local spatial variability in planktonic diversity and refine previous global studies at a lower resolution. They form a baseline at which long-term changes in planktonic diversity can be better assessed and ecosystem management plans implemented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The population dynamics of Mytilicola intestinalis Steuer in mussels (Mytilus edulis L.) from the River Lynher, Cornwall, England, have been studied over 3 years. By transplanting uninfested mussels from the River Erme, South Devon, into the Lynher mussel bed, the study was extended to the growth and development of new infestations under natural conditions. Female Mytilicola intestinalis are shown to breed twice, and two generations of parasites coexist for most of the year, with recruitment taking place in summer and autumn. One generation contributes its first brood to the autumn recruits before overwintering and contributing its second brood to the following summer's recruits. The other generation overwinters as juvenile and immature stages to contribute its two broods successively to the summer and autumn recruits. Environmental temperatures are believed to control the rates of development at all stages rather than acting as triggers in the onset or cessation of breeding at specific times. There is no evidence to support the contention that heavily infested mussels are killed, and parasite mortality is shown to be density-independent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ocean plays an important role in regulating the climate, acting as a sink for carbon dioxide, perturbing the carbonate system and resulting in a slow decrease of seawater pH. Understanding the dynamics of the carbonate system in shelf sea regions is necessary to evaluate the impact of Ocean Acidification (OA) in these societally important ecosystems. Complex hydrodynamic and ecosystem coupled models provide a method of capturing the significant heterogeneity of these areas. However rigorous validation is essential to properly assess the reliability of such models. The coupled model POLCOMS–ERSEM has been implemented in the North Western European shelf with a new parameterization for alkalinity explicitly accounting for riverine inputs and the influence of biological processes. The model has been validated in a like with like comparison with North Sea data from the CANOBA dataset. The model shows good to reasonable agreement for the principal variables, physical (temperature and salinity), biogeochemical (nutrients) and carbonate system (dissolved inorganic carbon and total alkalinity), but simulation of the derived variables, pH and pCO2, are not yet fully satisfactory. This high uncertainty is attributed mostly to riverine forcing and primary production. This study suggests that the model is a useful tool to provide information on Ocean Acidification scenarios, but uncertainty on pH and pCO2 needs to be reduced, particularly when impacts of OA on ecosystem functions are included in the model systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been hypothesized that changes in zooplankton community structure over the past four decades led to reduced growth and survival of prerecruit Atlantic cod (Gadus morhua) and that this was a key factor underlying poor year classes, contributing to stock collapse, and inhibiting the recovery of stocks around the UK. To evaluate whether observed changes in plankton abundance, species composition and temperature could have led to periods of poorer growth of cod larvae, we explored the effect of prey availability and temperature on early larval growth using an empirical trophodynamic model. Prey availability was parameterized using species abundance data from the Continuous Plankton Recorder. Our model suggests that the observed changes in plankton community structure in the North Sea may have had less impact on cod larval growth, at least for the first 40 days following hatching, than previously suggested. At least in the short term, environmental and prey conditions should be able to sustain growth of cod larvae and environmental changes acting on this early life stage should not limit stock recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are included. In the Benguela, such models were first applied to simulate the dispersal of anchovy Engraulis encrasicolus and sardine Sardinops sagax ichthyoplankton, and more recently of the early life stages of chokka-squid Loligo reynaudii and Cape hakes Merluccius spp. We identify how the models have helped advance understanding of key processes for these species. We then discuss which aspects of the early life of marine species in the Benguela Current ecosystem are still not well understood and could benefit from new modelling studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional seas are potentially highly vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas’ ecosystems. In this paper we explore the response of five regional sea areas to potential future climate change, acting via atmospheric, oceanic and terrestrial vectors. These include the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and are contrasted with a region of the Northeast Atlantic. Our aim is to elucidate the controlling dynamical processes and how these vary between and within these seas. We focus on primary production and consider the potential climatic impacts on: long term changes in elemental budgets, seasonal and mesoscale processes that control phytoplankton’s exposure to light and nutrients, and briefly direct temperature response. We draw examples from the MEECE FP7 project and five regional model systems each using a common global Earth System Model as forcing. We consider a common analysis approach, and additional sensitivity experiments. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Even in the two highly stratified, deep water seas we consider (Black and Baltic Seas) the increase in stratification is not seen as a first order control on primary production. Instead, results show a highly heterogeneous picture of positive and negative change arising from complex combinations of multiple physical drivers, including changes in mixing, circulation and temperature, which act both locally and non-locally through advection.