10 resultados para Acanthocyclops americanus, copepodites

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lengths, wet and dry weights, nitrogen and carbon contents of fresh, frozen and formaldehyde-fixed specimens of Calanus helgolandicus (Claus) were determined. Samples were collected during May 1980 in the Celtic Sea. Individual Copepodite Stages 3, 4, 5, and Adult Male and Female Stage 6 were measured and analysed, and 36 linear regression equations derived for these variables together with mean values, standard deviations and 95% confidence limits. The range of nitrogen values in the fresh material, expressed as a percentage of dry weight, ranged from 8.08%±0.80 (Copepodite Stage 3) to 10.89%±0.27 (adult female); carbon values changed from 41.6%±3.05 (mean ±95% confidence limits) for Copepodite Stage 3 to 50.97%±2.63 in Copepodite Stage 5. The adult females had a high nitrogen and relatively low carbon content, while the converse was true for Stage 5 copepodites. There was a loss of dry weight from the frozen samples (57%) and the fixed samples (38%) compared with the mean of the fresh dry weight of all stages. The material lost from the copepods was rich in nitrogen, thus, artificially high percentage carbon values were determined from the frozen and fixed samples (52.0 to 60.3% and 44.7 to 58.5%, respectively).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calanus helgolandicus over-winters in the shallow waters (100 m) of the Celtic Sea as copepodite stages V and VI; the minimum temperature in winter is approximately 8.0°C. This over-wintering is not a true hibernation or dormacy, accompanied by a reduced metabolic state with a discontinuation of feeding and development, but more of a lowered activity, involving reduced feeding and development, with predation on available microzooplankton and detritus. Analysis of specimens from the winter population showed that copepodite stages V and VI were actively feeding and still producing and possibly liberating eggs. The absence of late nauplii and young copepodites in the water column until late March indicated that there must be a high mortality of these winter cohorts. The copepodites of the first generation appeared in April–May, the younger stages, copepodites I to III, being distributed deeper in the water column below the euphotic zone and thermocline. This distribution would contribute to amuch slower rate of development. By August the ontogenetic vertical distributions observed in the copepodites were reversed, the younger stages occuring in the warmer surface layers within the euphotic zone. Diurnal migrations were observed in the later copepodites only, the younger stages I to III either remaining deep in spring or shallow in summer. The causal mechanisms which alter the behaviour of the young copepodites remain unexplained. The development of the population of Calanus helgolandicus in 1978, reaching its peak of abundance in August, was typical for the shelf seas around U.K. as observed from Continuous Plankton Recorder data, 1958 to 1977.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vertical distributions of the spring populations of Calanus finmarchicus (Gunnerus) and C. helgolandicus Claus are described and compared. The differences we observed between the two species have probably confused the understanding of the vertical distribution and development of the populations of Calanus spp. in the shelf seas around the United Kingdom where the species occur together. The results imply that these two congeneric species have different behaviour patterns which minimise interspecific competition where the species have sympatric distributions. C. finmarchicus has its younger development stages overlying the older stages in the water column. In C. helgolandicus the converse is true; i. e., the majority of the populations of Stage I and II copepodites of the first spring generations are found below the thermocline. It is also suggested that the different behaviour patterns lead to different feeding regimes and strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neocalanus plumchrus/flemingeri copepods make up a large proportion of spring mesozooplankton biomass and are a valuable nutritional source for many higher trophic levels. Copepodites through to sub-adult stage are present in surface waters for a relatively short period of time each spring, and the date of maximum biomass has been calculated as the date when 50% of the population were at the sub-adult, CV stage. This index allows quite a precise date to be calculated from relatively infrequent sampling and interannual comparisons between 1957 and 2004 have demonstrated that the timing of peak abundance is significantly advanced in warmer years. However, recent data from the Continuous Plankton Recorder survey, which samples the surface NE Pacific more frequently during spring, has found that maximum numbers of CV copepodites occur after the 50% point is reached so that maximum biomass occurs some weeks later than predicted by this index (although comparisons between years show that the magnitude of the timing shift is similar). Comparisons with depth-stratified profiles from the BIONESS show that this is not just due to single-depth near-surface sampling by the CPR. We speculate on the cause of this change which could be related to the width of the cohort (which appears to now be narrower, at least in warm years) or the length of time that the CV stage needs to spend in the surface accumulating lipid before beginning diapause. A narrower cohort has implications for predators who will have less time to take advantage of this food source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the near future, the marine environment is likely to be subjected to simultaneous increases in temperature and decreased pH. The potential effects of these changes on intertidal, meiofaunal assemblages were investigated using a mesocosm experiment. Artificial Substrate Units containing meiofauna from the extreme low intertidal zone were exposed for 60 days to eight experimental treatments (four replicates for each treatment) comprising four pH levels: 8.0 (ambient control), 7.7 & 7.3 (predicted changes associated with ocean acidification), and 6.7 (CO2 point-source leakage from geological storage), crossed with two temperatures: 12 °C (ambient control) and 16 °C (predicted). Community structure, measured using major meiofauna taxa was significantly affected by pH and temperature. Copepods and copepodites showed the greatest decline in abundance in response to low pH and elevated temperature. Nematodes increased in abundance in response to low pH and temperature rise, possibly caused by decreased predation and competition for food owing to the declining macrofauna density. Nematode species composition changed significantly between the different treatments, and was affected by both seawater acidification and warming. Estimated nematode species diversity, species evenness, and the maturity index, were substantially lower at 16 °C, whereas trophic diversity was slightly higher at 16 °C except at pH 6.7. This study has demonstrated that the combination of elevated levels of CO2 and ocean warming may have substantial effects on structural and functional characteristics of meiofaunal and nematode communities, and that single stressor experiments are unlikely to encompass the complexity of abiotic and biotic interactions. At the same time, ecological interactions may lead to complex community responses to pH and temperature changes in the interstitial environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In April and May 1991 and between March and June 1992 data regarding the diet of larval S. pilchardus in relation to food availability was gathered. Interpretation of results is compromised by the tendency of sardine larvae to defecate their gut contents during sampling. The most common food organisms in the guts (78-89%) were the developmental stages of copepods (eggs, nauplii and copepodites). Percentage composition of copepod nauplii in the diet decreased with increasing larval size, while copepodites increased. There was no consistent relationship between food availability and feeding success, probably because feeding conditions were generally adequate.