9 resultados para AUTOMATED
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
Resumo:
Phytoplankton observation is the product of a number of trade-offs related to sampling processes, required level of diversity and size spectrum analysis capabilities of the techniques involved. Instruments combining the morphological and high-frequency analysis for phytoplankton cells are now available. This paper presents an application of the automated high-resolution flow cytometer Cytosub as a tool for analysing phytoplanktonic cells in their natural environment. High resolution data from a temporal study in the Bay of Marseille (analysis every 30 min over 1 month) and a spatial study in the Southern Indian Ocean (analysis every 5 min at 10 knots over 5 days) are presented to illustrate the capabilities and limitations of the instrument. Automated high-frequency flow cytometry revealed the spatial and temporal variability of phytoplankton in the size range 1−∼50 μm that could not be resolved otherwise. Due to some limitations (instrumental memory, volume analysed per sample), recorded counts could be statistically too low. By combining high-frequency consecutive samples, it is possible to decrease the counting error, following Poisson’s law, and to retain the main features of phytoplankton variability. With this technique, the analysis of phytoplankton variability combines adequate sampling frequency and effective monitoring of community changes.
Resumo:
The increasing availability of large, detailed digital representations of the Earth’s surface demands the application of objective and quantitative analyses. Given recent advances in the understanding of the mechanisms of formation of linear bedform features from a range of environments, objective measurement of their wavelength, orientation, crest and trough positions, height and asymmetry is highly desirable. These parameters are also of use when determining observation-based parameters for use in many applications such as numerical modelling, surface classification and sediment transport pathway analysis. Here, we (i) adapt and extend extant techniques to provide a suite of semi-automatic tools which calculate crest orientation, wavelength, height, asymmetry direction and asymmetry ratios of bedforms, and then (ii) undertake sensitivity tests on synthetic data, increasingly complex seabeds and a very large-scale (39 000km2) aeolian dune system. The automated results are compared with traditional, manually derived,measurements at each stage. This new approach successfully analyses different types of topographic data (from aeolian and marine environments) from a range of sources, with tens of millions of data points being processed in a semi-automated and objective manner within minutes rather than hours or days. The results from these analyses show there is significant variability in all measurable parameters in what might otherwise be considered uniform bedform fields. For example, the dunes of the Rub’ al Khali on the Arabian peninsula are shown to exhibit deviations in dimensions from global trends. Morphological and dune asymmetry analysis of the Rub’ al Khali suggests parts of the sand sea may be adjusting to a changed wind regime from that during their formation 100 to 10 ka BP.