12 resultados para ASYMPTOMATIC PARASITE CARRIERS

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of Mytilicola intestinalis in populations of mussels in south-west England is recorded and compared with previous data. Since 1955 there have been two main changes in the distribution of Mytilicola: (a) it has invaded all the major estuarine mussel populations on the Bristol Channel coast, and (b) many previously uninfested open-coast populations all round the peninsula are now lightly infested. It is suggested that differences in infestation levels between estuarine and open-coast populations of mussels are due primarily to differences in the degree of exposure to wave action although factors such as size, population density and location of the hosts also influence infestation. The chance of the establishment of breeding pairs of Mytilicola depends on the parasite population size and its distribution through the host population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites are not typically considered to be important components of polar marine ecosystems. It was therefore surprising when 18S rDNA surveys of protists in the West Antarctic Peninsula in winter revealed high abundances of parasite sequences. Parasite sequences made up, on average, over half (52%) of sequence reads in samples from deep water in winter. Winter surface water and sediment samples contained relatively fewer, but still strikingly high, parasite sequence reads (13 and 9%, respectively), while surface water samples in summer contained fewer parasite sequences (1.8%). A total of 1028 distinct parasite Operational Taxonomic Units were observed in winter, with the largest abundances and diversities within Syndiniales groups I and II, including Amoebophrya. Less abundant parasite sequence groups included Apicomplexa, Blastodinium, Chytriodinium, Cryptocaryon, Paradinium, Perkinsidae, Pirsonia and Ichthyophonae. Parasite sequence distributions suggested interactions with known hosts, such as diatom parasites which were mainly in the sediments, where resting spores of Chaetoceros spp. diatoms were abundant. Syndiniales sequences were correlated with radiolarian sequences, suggesting parasite–host interactions. The abundant proportions of parasite sequences indicate a potentially important role for parasites in the Antarctic marine ecosystem, with implications for plankton population dynamics, the role of the microbial loop, carbon flows and ecosystem responses to ongoing anthropogenic climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites are not typically considered to be important components of polar marine ecosystems. It was therefore surprising when 18S rDNA surveys of protists in the West Antarctic Peninsula in winter revealed high abundances of parasite sequences. Parasite sequences made up, on average, over half (52%) of sequence reads in samples from deep water in winter. Winter surface water and sediment samples contained relatively fewer, but still strikingly high, parasite sequence reads (13 and 9%, respectively), while surface water samples in summer contained fewer parasite sequences (1.8%). A total of 1028 distinct parasite Operational Taxonomic Units were observed in winter, with the largest abundances and diversities within Syndiniales groups I and II, including Amoebophrya. Less abundant parasite sequence groups included Apicomplexa, Blastodinium, Chytriodinium, Cryptocaryon, Paradinium, Perkinsidae, Pirsonia and Ichthyophonae. Parasite sequence distributions suggested interactions with known hosts, such as diatom parasites which were mainly in the sediments, where resting spores of Chaetoceros spp. diatoms were abundant. Syndiniales sequences were correlated with radiolarian sequences, suggesting parasite–host interactions. The abundant proportions of parasite sequences indicate a potentially important role for parasites in the Antarctic marine ecosystem, with implications for plankton population dynamics, the role of the microbial loop, carbon flows and ecosystem responses to ongoing anthropogenic climate change.