16 resultados para 7136-301

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Aerial rate of oxygen consumption by Mytilus edulis and M. galloprovincialis is 4–17% of the aquatic rate. 2. For Cardium edule and Modiolus demissus the aerial rate of oxygen uptake is between 28 and 78% of the aquatic rate. 3. These species differences are related to the degree of shell gape during air exposure. 4. All species show an apparent oxygen debt after exposure to air, the extent of which is not simply related to either the level of aerobic respiration or the degree of anaerobiosis during exposure. 5. Anaerobic end-products accumulate in the tissues of Mytilus during aerial exposure, but not in Cardium. 6. The relative energy yields by aerobic and anaerobic means in M. edulis are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A procedure for estimating total organochlorine pesticide and PCB residue in seal blubber at concentrations of greater than 1μg g-1 of lipid is described. Lipid is cleaned up by alumina column chromatography, and the halogen concentration of the resulting hexane eluace is determined by combustion and microcoulometry. Results are similar to those obtained by gas chromatographic analysis and can be used to interpolate between results so obtained when data on specific organochlorine compounds is not required for each sample. The organochlorine residues recovered in this manner did not constitute all the halogen determined by combustion and microcoulometry of seal lipid. Analysis by the total halogen procedure was 2.5 tunes faster than the rate achieved with a combination of liquid and gas chromatography operated manually; the requirements for laboratory equipment and space for sample preparation are reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence of global warming is now unequivocal, and studies suggest that it has started to influence natural systems of the planet, including the oceans. However, in the marine environment, it is well-known that species and ecosystems can also be influenced by natural sources of large-scale hydro-climatological variability. The North Atlantic Oscillation (NAO) was negatively correlated with the mean abundance of one of the subarctic key species Calanus finmarchicus in the North Sea. This correlation was thought to have broken down in 1996, however, the timing has never been tested statistically. The present study revisits this unanticipated change and reveals that the correlation did not break down in 1996 as originally proposed but earlier, at the time of an abrupt ecosystem shift in the North Sea in the 1980s. Furthermore, the analyses demonstrate that the correlation between the NAO and C. finmarchicus abundance is modulated by the thermal regime of the North Sea, which in turn covaries positively with global temperature anomalies. This study thereby provides evidence that global climate change is likely to alter some empirical relationships found in the past between species abundance or the ecosystem state and large-scale natural sources of hydro-climatological variability. A theory is proposed to explain how this might happen. These unanticipated changes, also called ‘surprises’ in climatic research, are a direct consequence of the complexity of both climatic and biological systems. In this period of rapid climate change, it is therefore hazardous to integrate meteo-oceanic indices such as the NAO in models used in the management of living resources, as it has been sometimes attempted in the past.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cool-water copepod Calanus finmarchicus is a key species in North Atlantic marine ecosystems since it represents an important food resource for the developmental stages of several fish of major economic value. Over the last 40 years, however, data from the Continuous Plankton Recorder survey have highlighted a 70 per cent reduction in C. finmarchicus biomass, coupled with a gradual northward shift in the species's distribution, which have both been linked with climate change. To determine the potential for C. finmarchicus to track changes in habitat availability and maintain stable effective population sizes, we have assessed levels of gene flow and dispersal in current populations, as well as using a coalescent approach together with palaeodistribution modelling to elucidate the historical population demography of the species over previous changes in Earth's climate. Our findings indicate high levels of dispersal and a constant effective population size over the period 359 000–566 000 BP and suggest that C. finmarchicus possesses the capacity to track changes in available habitat, a feature that may be of crucial importance to the species's ability to cope with the current period of global climate change.