6 resultados para 689

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During a 25 d Lagrangian study in May and June 1990 in the Northeast Atlantic Ocean, marine snow aggregates were collected using a novel water bottle, and the composition was determined microscopically. The aggregates contained a characteristic signature of a matrix of bacteria, cyanobacteria and autotrophic picoplankton with inter alia inclusions of the tintiniid Dictyocysta elegans and large pennate diatoms. The concentration of bacteria and cyanobacteria was much greater on the aggregates than when free-living by factors of 100 to 6000 and 3000 to 2 500 000, respectively, depending on depth. Various species of crustacean plankton and micronekton were collected, and the faecal pellets produced after capture were examined. These often contained the marine snow signature, indicating that these organisms had been consuming marine snow. In some cases, marine snow material appeared to dominate the diet. This implies a food-chain short cut wherby material, normally too small to be consumed by the mesozooplankton, and considered to constitute the diet of the microplankton can become part of the diet of organisms higher in the food-chain. The micronekton was dominated by the amphipod Themisto compressa, whose pellets also contained the marine snow signature. Shipboard incubation experiments with this species indicated that (1) it does consume marine snow, and (2) its gut-passage time is sufficiently long for material it has eaten in the upper water to be defecated at its day-time depth of several hundred meters. Plankton and micronekton were collected with nets to examine their vertical distribution and diel migration and to put into context the significance of the flux of material in the guts of migrants. “Gut flux” for the T. compressa population was calculated to be up to 2% of the flux measured simultaneously by drifting sediment traps and <5% when all migrants are considered. The in situ abundance and distribution of marine snow aggregates (>0.6 mm) was examined photographically. A sharp concentration peak was usually encountered in the depth range 40 to 80 m which was not associated with peaks of in situ fluorescence or attenuation but was just below or at the base of the upper mixed layer. The feeding behaviour of zooplankton and nekton may influence these concentration gradients to a considerable extent, and hence affect the flux due to passive settling of marine snow aggregates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The process of invasion and the desire to predict the invasiveness (and associated impacts) of new arrivals has been a focus of attention for ecologists over centuries. The volunteer recording community has made unique and inspiring contributions to our understanding of invasion biology within Britain. Indeed information on non-native species (NNS) compiled within the GB Non-Native Species Information Portal (GB-NNSIP) would not have been possible without the involvement of volunteer experts from across Britain. Here we review examples of ways in which biological records have informed invasion biology. We specifically examine NNS information available within the GB-NNSIP to describe patterns in the arrival and establishment of NNS providing an overview of habitat associations of NNS in terrestrial, marine and freshwater environments. Monitoring and surveillance of the subset of NNS that are considered to be adversely affecting biodiversity, society or the economy, termed invasive non-native species (INNS), is critical for early warning and rapid response. Volunteers are major contributors to monitoring and surveillance of INNS and not only provide records from across Britain but also underpin the system of verification necessary to confirm the identification of sightings. Here we describe the so-called ‘alert system’ which links volunteer experts with the wider recording community to provide early warning of INNS occurrence. We highlight the need to increase understanding of community and ecosystem-level effects of invasions and particularly understanding of ecological resilience. Detailed field observations, through biological recording, will provide the spatial, temporal and taxonomic breadth required for such research. The role of the volunteer recording community in contributing to the understanding of invasion biology has been invaluable and it is clear that their expertise and commitment will continue to be so. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015,