9 resultados para 5% high
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Phytoplankton observation is the product of a number of trade-offs related to sampling processes, required level of diversity and size spectrum analysis capabilities of the techniques involved. Instruments combining the morphological and high-frequency analysis for phytoplankton cells are now available. This paper presents an application of the automated high-resolution flow cytometer Cytosub as a tool for analysing phytoplanktonic cells in their natural environment. High resolution data from a temporal study in the Bay of Marseille (analysis every 30 min over 1 month) and a spatial study in the Southern Indian Ocean (analysis every 5 min at 10 knots over 5 days) are presented to illustrate the capabilities and limitations of the instrument. Automated high-frequency flow cytometry revealed the spatial and temporal variability of phytoplankton in the size range 1−∼50 μm that could not be resolved otherwise. Due to some limitations (instrumental memory, volume analysed per sample), recorded counts could be statistically too low. By combining high-frequency consecutive samples, it is possible to decrease the counting error, following Poisson’s law, and to retain the main features of phytoplankton variability. With this technique, the analysis of phytoplankton variability combines adequate sampling frequency and effective monitoring of community changes.
Resumo:
Polar Oceans are natural CO2 sinks because of the enhanced solubility of CO2 in cold water. The Arctic Ocean is at additional risk of accelerated ocean acidification (OA) because of freshwater inputs from sea ice and rivers, which influence the carbonate system. Winter conditions in the Arctic are of interest because of both cold temperatures and limited CO2 venting to the atmosphere when sea ice is present. Earlier OA experiments on Arctic microbial communities conducted in the absence of ice cover, hinted at shifts in taxa dominance and diversity under lowered pH. The Catlin Arctic Survey provided an opportunity to conduct in situ, under-ice, OA experiments during late Arctic winter. Seawater was collected from under the sea ice off Ellef Ringnes Island, and communities were exposed to three CO2 levels for 6 days. Phylogenetic diversity was greater in the attached fraction compared to the free-living fraction in situ, in the controls and in the treatments. The dominant taxa in all cases were Gammaproteobacteria but acidification had little effect compared to the effects of containment. Phylogenetic net relatedness indices suggested that acidification may have decreased the diversity within some bacterial orders, but overall there was no clear trend. Within the experimental communities, alkalinity best explained the variance among samples and replicates, suggesting subtle changes in the carbonate system need to be considered in such experiments. We conclude that under ice communities have the capacity to respond either by selection or phenotypic plasticity to heightened CO2 levels over the short term.
Resumo:
In the Southern Ocean, there is increasing evidence that seasonal to subseasonal temporal scales, and meso- to submesoscales play an important role in understanding the sensitivity of ocean primary productivity to climate change. This drives the need for a high-resolution approach to re- solving biogeochemical processes. In this study, 5.5 months of continuous, high-resolution (3 h, 2 km horizontal resolution) glider data from spring to summer in the Atlantic Subantarctic Zone is used to investigate: (i) the mechanisms that drive bloom initiation and high growth rates in the region and (ii) the seasonal evolution of water column production and respiration. Bloom initiation dates were analysed in the context of upper ocean boundary layer physics highlighting sensitivities of different bloom detection methods to different environmental processes. Model results show that in early spring (September to mid-November) increased rates of net community production (NCP) are strongly affected by meso- to submesoscale features. In late spring/early summer (late-November to mid-December) seasonal shoaling of the mixed layer drives a more spatially homogenous bloom with maximum rates of NCP and chlorophyll biomass. A comparison of biomass accumulation rates with a study in the North Atlantic highlights the sensitivity of phytoplankton growth to fine-scale dynamics and emphasizes the need to sample the ocean at high resolution to accurately resolve phytoplankton phenology and improve our ability to estimate the sensitivity of the biological carbon pump to climate change.
Resumo:
The purpose of this study is to produce a series of Conceptual Ecological Models (CEMs) that represent sublittoral rock habitats in the UK. CEMs are diagrammatic representations of the influences and processes that occur within an ecosystem. They can be used to identify critical aspects of an ecosystem that may be studied further, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. It is intended that the models produced by this project will be used to guide indicator selection for the monitoring of this habitat in UK waters. CEMs may eventually be produced for a range of habitat types defined under the UK Marine Biodiversity Monitoring R&D Programme (UKMBMP), which, along with stressor models, are designed to show the interactions within impacted habitats, would form the basis of a robust method for indicator selection. This project builds on the work to develop CEMs for shallow sublittoral coarse sediment habitats (Alexander et al 2014). The project scope included those habitats defined as ‘sublittoral rock’. This definition includes those habitats that fall into the EUNIS Level 3 classifications A3.1 Atlantic and Mediterranean high energy infralittoral rock, A3.2 Atlantic and Mediterranean moderate energy infralittoral rock, A3.3 Atlantic and Mediterranean low energy infralittoral rock, A4.1 Atlantic and Mediterranean high energy circalittoral rock, A4.2 Atlantic and Mediterranean moderate energy circalittoral rock, and A4.3 Atlantic and Mediterranean low energy circalittoral rock as well as the constituent Level 4 and 5 biotopes that are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted using a pragmatic and iterative approach to gather evidence regarding species traits and information that would be used to inform the models and characterise the interactions that occur within the sublittoral rock habitat. All information gathered during the literature review was entered into a data logging pro-forma spreadsheet that accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A multivariate analysis approach was adopted to assess ecologically similar groups (based on ecological and life history traits) of fauna from the identified species to form the basis of the models. A model hierarchy was developed based on these ecological groups. One general control model was produced that indicated the high-level drivers, inputs, biological assemblages, ecosystem processes and outputs that occur in sublittoral rock habitats. In addition to this, seven detailed sub-models were produced, which each focussed on a particular ecological group of fauna within the habitat: ‘macroalgae’, ‘temporarily or permanently attached active filter feeders’, ‘temporarily or permanently attached passive filter feeders’, ‘bivalves, brachiopods and other encrusting filter feeders’, ‘tube building fauna’, ‘scavengers and predatory fauna’, and ‘non-predatory mobile fauna’. Each sub-model is accompanied by an associated confidence model that presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers that affect each ecological group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Physical drivers which influence the ecosystem were found to be of high importance for the sublittoral rock habitat, with factors such as wave exposure, water depth and water currents noted to be crucial in defining the biological assemblages. Other important factors such as recruitment/propagule supply, and those which affect primary production, such as suspended sediments, light attenuation and water chemistry and temperature, were also noted to be key and act to influence the food sources consumed by the biological assemblages of the habitat, and the biological assemblages themselves. Output processes performed by the biological assemblages are variable between ecological groups depending on the specific flora and fauna present and the role they perform within the ecosystem. Of particular importance are the outputs performed by the macroalgae group, which are diverse in nature and exert influence over other ecological groups in the habitat. Important output processes from the habitat as a whole include primary and secondary production, bioengineering, biodeposition (in mixed sediment habitats) and the supply of propagules; these in turn influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability (in mixed sediment habitats), habitat provision and population and algae control. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions that occur at the regional to global scale. Features within the models that are most useful for monitoring habitat status and change due to natural variation have been identified, as have those that may be useful for monitoring to identify anthropogenic causes of change within the ecosystem. Biological, physical and chemical features of the ecosystem have been identified as potential indicators to monitor natural variation, whereas biological factors and those physical /chemical factors most likely to affect primary production have predominantly been identified as most likely to indicate change due to anthropogenic pressures.
Resumo:
A new approach to compute along-track velocity components by combining altimetry-based across-track components and front directions from remote sensing maps of surface chlorophyll concentration is proposed. The analysis focuses on the South Madagascar region characterized by the strong East Madagascar Current and sharp gradients of surface tracers. The results are compared against in-situ observations from three moorings along the Jason-1 track 196. Accurate information on the total velocity direction is the key factor for obtaining accurate estimates of along-track velocities. Although with some limitations, surface tracer fronts can be successfully used to retrieve such information.
Resumo:
Sentinel-3A is scheduled for launch in Oct. 2015, with Sentinel-3B to follow 18 months later. Together these missions are to take oceanographic remote-sensing into a new operational realm. To achieve this a large number of processing, calibration and validation tasks have to be applied to their data in order to assess for quality, absolute bias, short-term changes and long-term drifts. ESA has funded the Sentinel-3 Mission Performance Centre (S3MPC) to carry out this evaluation on behalf of ESA and EUMETSAT. The S3MPC is run by a consortium led by ACRI [1] and this paper describes the work on the calibration/validation (cal/val) of the Surface Topography Mission (STM), which is co-ordinated by CLS and PML.