9 resultados para 342-U1410C

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mean intensity of the NE Atlantic upwelling system at its northern limit (Galicia, NW Spain) decreased during the last 40 years. At the same time, warming of surface waters was detected. Plankton biomass and composition are expected to reflect such changes when integrated over large time and space scales. In this study, biomass, abundance and species composition of phyto- and zooplankton were analysed to search for significant patterns of annual change and relations with upwelling intensity. Regionally integrated, mostly offshore, data were obtained from the Continuous Plankton Recorder (since 1958) whereas coastal data from Vigo and A Coruña came from the Radiales program (since 1987). No significant trends were found in phytoplankton biomass at either regional or local scales. However, there was a significant decrease in diatom abundance at regional scales and also of large species at local scales. Zooplankton abundance (mainly copepods) significantly decreased offshore but increased near the coast. Biomass of zooplankton also increased near the coast, with the fastest rates in the south. Warm-water species, like Temora stylifera, were increasingly abundant at both regional and local scales. Significant correlations between upwelling intensity and plankton suggest that climatic effects were delayed for several years. Our results indicate that the effects of large scale climatic trends on plankton communities are being effectively modulated within the pelagic ecosystem in this upwelling region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degree to which advection modulates the distribution of plankton populations at a 1-D coastal observatory was assessed at station L4 in the western English Channel (50°15′N 4°13′W, depth 50 m), part of the Western Channel Observatory (WCO). Five tidal-cycle surveys were conducted, three in spring and two in summer 2010. Observations of the physical characteristics of L4 were obtained by using a moored acoustic doppler current profiler (ADCP) and a free-falling microstructure sensor (MSS). The moored ADCP highlighted the presence of vertical shear, with typical values of U during spring tides of ∼0.5 m s−1 at the surface and ∼0.2 m s−1 at the bed. The distribution of phyto- and zooplankton populations above a size threshold of 200 μm were examined using an in-line holographic imaging system, the Holocam. Variability in time as well as depth is a common feature throughout each of the surveys, with examples of recorded numbers of phytoplankton that ranged between 1300 L−1 and 2300 L−1 at the same depth but at different points within the tidal cycle. Further, at the same points in the tidal cycle the number of recorded zooplankton was also seen to vary, specifically with the identification of gelatinous planula in spring that increased the observed number to maximums of between 140 L−1 and 220 L−1 in the upper layer, considerably higher that the corresponding WP-2 net counts for a similar period. Specific aspects of the movement and transfer of plankton relating to advection and interaction with the pycnocline are identified, both across tidal cycles and seasons.