14 resultados para 320-U1336
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Here we present quantitative projections of potential futures for ecosystems in the North Atlantic basin generated from coupling a climate change-driven biophysical model (representing ecosystem and fish populations under climate change) and a scenario-driven ecological–economic model (representing fleets and industries under economic globalization). Four contrasting scenarios (Baseline, Fortress, Global Commons, Free Trade) were defined from the perspective of alternative regional management and governance of the oceanic basin, providing pathways for the future of ecosystems in the Northeast Atlantic basin by 2040. Results indicate that in the time frame considered: (1) the effects of governance and trade decisions are more significant in determining outcomes than the effects of climate change alone, (2) climate change is likely to result in a poleward latitudinal shift of species ranges and thus resources, with implications for exploitation patterns, (3) the level of fisheries regulation is the most important factor in determining the long term evolution of the fisheries system, (4) coupling climate change and governance impacts demonstrates the complex interaction between different components of this social–ecological system, (5) an important driver of change for the future of the North Atlantic and the European fishing fleets appears to be the interplay between wild fisheries and aquaculture development, and finally (6) scenarios demonstrate that the viability and profit of fisheries industries is highly volatile. This study highlights the need to explore basin-scale policy that combines medium to long-term environmental and socio-economic considerations, and the importance of defining alternative sustainable pathways.
Resumo:
Science-based approaches to support the conservation of marine biodiversity have been developed in recent years. They include measures of ‘rarity’, ‘diversity’, ‘importance’, biological indicators of water ‘quality’ and measures of ‘sensitivity’. Identifying the sensitivity of species and biotopes, the main topic of this contribution, relies on accessing and interpreting available scientific data in a structured way and then making use of information technology to disseminate suitably presented information to decision makers. The Marine Life Information Network (MarLIN) has achieved that research for a range of environmentally critical species and biotopes over the past four years and has published the reviews on the MarLIN Web site (www.marlin.ac.uk). Now, by linking the sensitivity database and databases of survey information, sensitivity mapping approaches using GIS are being developed. The methods used to assess sensitivity are described and the approach is advocated for wider application in Europe.