2 resultados para 2015 FCE LTER Mid-term Review

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is growing evidence that climate change could affect marine benthic systems. This review provides information of climate change‐related impacts on the marine benthos in the North Atlantic. We cover a number of related research aspects, mainly in connection to two key issues. First, is the relationship between different physical aspects of climate change and the marine benthos. This section covers: (a) the responses to changes in seawater temperature (biogeographic shifts and phenology); (b) altered Hydrodynamics; (c) ocean acidification (OA); and (d) sea‐level rise‐coastal squeeze. The second major issue addressed is the possible integrated impact of climate change on the benthos. This work is based on relationships between proxies for climate variability, notably the North Atlantic Oscillation (NAO) index, and the long‐term marine benthos. The final section of our review provides a series of conclusions and future directions to support climate change research on marine benthic systems. WIREs Clim Change 2015, 6:203–223. doi: 10.1002/wcc.330

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We compare the long-term and seasonal patterns of abundance and phenology of the cyclopoid copepod Oithona similis at the L4 site (1988–2013) in the North Atlantic and at the LTER-MC site (1984–2013) in the Mediterranean Sea to investigate whether high temperature limits the occurrence of this species with latitudinal cline. The two sites are well suited to testing this hypothesis as they are characterized by similar chlorophyll a concentration (Chl a) but different temperature [sea surface temperature (SST)]. The abundance of O. similis at L4 was ∼10 times higher than at LTER-MC. Moreover, this species had several peaks of abundance during the year at L4 but a single peak in spring at LTER-MC. The main mode of temporal variability in abundance was seasonal at both sites. The abundance of O. similis was negatively correlated with SST only at LTER-MC, whereas it was positively correlated with Chl a at both sites. Oithona similis had a temperature optimum between 15 and 20°C reaching maximum abundance at ∼16.5°C at LTER-MC, but showed no Chl a optimum at either site. We conclude that the abundance of O. similis increases with prey availability up to 16.5°C and that temperature >20°C represents the main limiting factor for population persistence.