10 resultados para 17-168
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
This report provides an overview of water and sediment quality within the Essex Estuaries European Marine Site (EMS) and examines evidence for their influence on biological condition. Site characterisation has been accomplished by review of published literature and unpublished reports, together with interrogation of summary data sets for tidal waters provided by EA.
Resumo:
The effects of ocean acidification (OA) on nitrous oxide (N2O) production and on the community composition of ammonium oxidizing archaea (AOA) were examined in the northern and southern sub-polar and polar Atlantic Ocean. Two research cruises were performed during June 2012 between the North Sea and Arctic Greenland and Barent Seas, and in January–February 2013 to the Antarctic Scotia Sea. Seven stations were occupied in all during which shipboard experimental manipulations of the carbonate chemistry were performed through additions of NaHCO3−+HCl in order to examine the impact of short-term (48 h for N2O and between 96 and 168 h for AOA) exposure to control and elevated conditions of OA. During each experiment, triplicate incubations were performed at ambient conditions and at 3 lowered levels of pH which varied between 0.06 and 0.4 units according to the total scale and which were targeted at CO2 partial pressures of ~500, 750 and 1000 µatm. The AOA assemblage in both Arctic and Antarctic regions was dominated by two major archetypes that represent the marine AOA clades most often detected in seawater. There were no significant changes in AOA assemblage composition between the beginning and end of the incubation experiments. N2O production was sensitive to decreasing pHT at all stations and decreased by between 2.4% and 44% with reduced pHT values of between 0.06 and 0.4. The reduction in N2O yield from nitrification was directly related to a decrease of between 28% and 67% in available NH3 as a result of the pH driven shift in the NH3:NH4+ equilibrium. The maximum reduction in N2O production at conditions projected for the end of the 21st century was estimated to be 0.82 Tg N y−1.