17 resultados para 16S rRNA gene

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resolution of the SSU rRNA gene for phylogenetic analysis in the diatoms has been evaluated by Theriot et al. who claimed that the SSU rRNA gene could not be used to resolve the monophyly of the three diatoms classes described by Medlin and Kaczmarska. Although they used both only bolidomonads and heterokonts as outgroups, they did not explore outgroups further away than the heterokonts. In this study, the use of the multiple outgroups inside and outside the heterokonts with the rRNA gene for recovering the three monophyletic clades at the class level is evaluated. Trees with multiple outgroups ranging from only bolidophytes to Bacteria and Archea were analyzed with Bayesian and Maximum Likelihood analyses and two data sets were recovered with the classes being monophyletic. Other data sets were analyzed with non-weighted and weighted maximum parsimony. The latter reduced the number of clades and lengthened branch lengths between the clades. One data set using a weighted analysis recovered the three classes as monophyletic. Taking only bolidophytes as the only outgroup never produced monophyletic clades. Multiple outgroups including many heterokonts and certain members of the crown group radiation recovered monophyletic clades. The three classes can be defined by clear morphological differences primarily based on auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. A cladistic analysis of some of these features is presented and recovers the three classes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%-86%, were isolated from 770 m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean acidification influences sediment/water nitrogen fluxes, possibly by impacting on the microbial process of ammonia oxidation. To investigate this further, undisturbed sediment cores collected from Ny Alesund harbour (Svalbard) were incubated with seawater adjusted to CO2 concentrations of 380, 540, 760, 1,120 and 3,000 μatm. DNA and RNA were extracted from the sediment surface after 14 days' exposure and the abundance of bacterial and archaeal ammonia oxidising (amoA) genes and transcripts quantified using quantitative polymerase chain reaction. While there was no change to the abundance of bacterial amoA genes, an increase to 760 μatm pCO2 reduced the abundance of bacterial amoA transcripts by 65 %, and this was accompanied by a shift in the composition of the active community. In contrast, archaeal amoA gene and transcript abundance both doubled at 3,000 μatm, with an increase in species richness also apparent. This suggests that ammonia oxidising bacteria and archaea in marine sediments have different pH optima, and the impact of elevated CO2 on N cycling may be dependent on the relative abundances of these two major microbial groups. Further evidence of a shift in the balance of key N cycling groups was also evident: the abundance of nirS-type denitrifier transcripts decreased alongside bacterial amoA transcripts, indicating that NO3 − produced by bacterial nitrification fuelled denitrification. An increase in the abundance of Planctomycete-specific 16S rRNA, the vastmajority of which grouped with known anammox bacteria, was also apparent at 3,000 μatm pCO2. This could indicate a possible shift from coupled nitrification–denitrification to anammox activity at elevated CO2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trichodesmium, a colonial cyanobacterium typically associated with tropical waters, was observed between January and April 2014 in the western English Channel. Sequencing of the heterocyst differentiation (hetR) and 16S rRNA genes placed this community within the Clade IV Trichodesmium, an understudied clade previously found only in low numbers in warmer waters. Nitrogen fixation was not detected although measurable rates of nitrate uptake and carbon fixation were observed. Trichodesmium RuBisCO transcript abundance relative to gene abundance suggests the potential for viable and potentially active Trichodesmium carbon fixation. Observations of Trichodesmium when coupled with a numerical advection model indicate that Trichodesmium communities can remain viable for >3.5 months at temperatures lower than previously expected. The results suggest that Clade IV Trichodesmium occupies a different niche to other Trichodesmium species, and is a cold- or low-light-adapted variant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of ocean acidification and carbonation on microbial community structure was assessed during a large-scale in situ costal pelagic mesocosm study, included as part of the EPOCA 2010 Arctic campaign. The mesocosm experiment included ambient conditions (fjord) and nine mesocosms with pCO(2) levels ranging from similar to 145 to similar to 1420 mu atm. Samples for the present study were collected at ten time points (t-1, t1, t5, t7, t12, t14, t18, t22, t26 to t28) in seven treatments (ambient fjord (similar to 145), 2x similar to 185, similar to 270, similar to 685, similar to 820, similar to 1050 mu atm) and were analysed for "small" and "large" size fraction microbial community composition using 16S rRNA (ribosomal ribonucleic acid) amplicon sequencing. This high-throughput sequencing analysis produced similar to 20 000 000 16S rRNA V4 reads, which comprised 7000OTUs. The main variables structuring these communities were sample origins (fjord or mesocosms) and the community size fraction (small or large size fraction). The community was significantly different between the unenclosed fjord water and enclosed mesocosms (both control and elevated CO2 treatments) after nutrients were added to the mesocosms, suggesting that the addition of nutrients is the primary driver of the change in mesocosm community structure. The relative importance of each structuring variable depended greatly on the time at which the community was sampled in relation to the phytoplankton bloom. The sampling strategy of separating the small and large size fraction was the second most important factor for community structure. When the small and large size fraction bacteria were analysed separately at different time points, the only taxon pCO(2) was found to significantly affect were the Gammaproteobacteria after nutrient addition. Finally, pCO(2) treatment was found to be significantly correlated (non-linear) with 15 rare taxa, most of which increased in abundance with higher CO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Effects of ocean acidification on the composition of the active bacterial and archaeal community within Arctic surface sediment was analysed in detail using 16S rRNA 454 pyrosequencing. Intact sediment cores were collected and exposed to one of five different pCO(2) concentrations [380 (present day), 540, 750, 1120 and 3000 atm] and RNA extracted after a period of 14 days exposure. Measurements of diversity and multivariate similarity indicated very little difference between pCO(2) treatments. Only when the highest and lowest pCO(2) treatments were compared were significant differences evident, namely increases in the abundance of operational taxonomic units most closely related to the Halobacteria and differences to the presence/absence structure of the Planctomycetes. The relative abundance of members of the classes Planctomycetacia and Nitrospira increased with increasing pCO(2) concentration, indicating that these groups may be able to take advantage of changing pH or pCO(2) conditions. The modest response of the active microbial communities associated with these sediments may be due to the low and fluctuating pore-water pH already experienced by sediment microbes, a result of the pH buffering capacity of marine sediments, or due to currently unknown factors. Further research is required to fully understand the impact of elevated CO2 on sediment physicochemical parameters, biogeochemistry and microbial community dynamics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many marine habitats, such as the surface and tissues of marine invertebrates, including corals, harbour diverse populations of microorganisms, which are thought to play a role in the health of their hosts and influence mutualistic and competitive interactions. Investigating the presence and stability of quorum sensing (QS) in these ecosystems may shed light on the roles and control of these bacterial communities. Samples of 13 cnidarian species were screened for the presence and diversity of N-acyl-homoserine lactones (AHLs; a prevalent type of QS molecule) using thin-layer chromatography and an Agrobacterium tumefaciens NTL4 biosensor. Ten of 13 were found to harbour species-specific, conserved AHL profiles. AHLs were confirmed in Anemonia viridis using liquid chromatography tandem mass spectrometry. To assess temporal role and stability, AHLs were investigated in A. viridis from intertidal pools over 16 h. Patterns of AHLs showed conserved profiles except for two mid-chain length AHLs, which increased significantly over the day, peaking at 20:00, but had no correlation with pool chemistry. Denaturing gel electrophoresis of RT-PCR-amplified bacterial 16S rRNA showed the presence of an active bacterial community that changed in composition alongside AHL profiles and contained a number of bands that affiliate with known AHL-producing bacteria. Investigations into the quorum sensing-controlled, species-specific roles of these bacterial communities and how these regulatory circuits are influenced by the coral host and members of the bacterial community are imperative to expand our knowledge of these interactions with respect to the maintenance of coral health.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The response of the benthic microbial community to a controlled sub-seabed CO2 leak was assessed using quantitative PCR measurements of benthic bacterial, archaeal and cyanobacteria/chloroplast 16S rRNA genes. Samples were taken from four zones (epicentre; 25 m distant, 75 m distant and 450 m distant) during 6 time points (7 days before CO2 exposure, after 14 and 36 days of CO2 release, and 6, 20 and 90 days after the CO2 release had ended). Changes to the active community of microphytobenthos and bacteria were also assessed before, during and after CO2 release. Increases in the abundance of microbial 16S rRNA were detected after 14 days of CO2 release and at a distance of 25 m from the epicentre. CO2 related changes to the relative abundance of both major and minor bacterial taxa were detected: most notably an increase in the relative abundance of the Planctomycetacia after 14 days of CO2 release. Also evident was a decrease in the abundance of microbial 16S rRNA genes at the leak epicentre during the initial recovery phase: this coincided with the highest measurements of DIC within the sediment, but may be related to the release of potentially toxic metals at this time point.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dinoflagellate genus Alexandrium contains several toxin producing species and strains, which can cause major economic losses to the shell fish industry. It is therefore important to be able to detect these toxin producers and also distinguish toxic strains from some of the morphologically identical non-toxic strains. To facilitate this DNA probes to be used in a microarray format were designed in silico or developed from existing published probes. These probes targeted either the 18S or 28S ribosomal ribonucleic acid (rRNA) gene in Alexandrium tamarense Group I, Group III and Group IV, Alexandrium ostenfeldii and Alexandrium minutum. Three strains of A. tamarense Group I, A. tamarense Group III, A. minutum and two strains of A. ostenfeldii were grown at optimal conditions and transferred into new environmental conditions changing either the light intensity, salinity, temperature or nutrient concentrations, to check if any of these environmental conditions induced changes in the cellular ribonucleic acid (RNA) concentration or growth rate. The aim of this experiment was the calibration of several species-specific probes for the quantification of the toxic Alexandrium strains. Growth rates were highly variable but only elevated or lowered salinity significantly lowered growth rate for A. tamarense Group I and Group III; differences in RNA content were not significant for the majority of the treatments. Only light intensity seemed to affect significantly the RNA content in A. tamarense Group I and Group III, but this was still within the same range as for the other treatments meaning that a back calibration from RNA to cell numbers was possible. The designed probes allow the production of quantitative information for Alexandrium species for the microarray chip.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of the seasonal deposition of phytoplankton and phytodetritus on surface sediment bacterial abundance and community composition was investigated at the Western English Channel site L4. Sediment and water samples were collected from January to September in 2012, increasing in frequency during periods of high water column phytoplankton abundance. Compared to the past two decades, the spring bloom in 2012 was both unusually long in duration and contained higher than average biomass. Within spring months, the phytoplankton bloom was well mixed through the water column and showed accumulations near the sea bed, as evidenced by flow cytometry measurements of nanoeukaryotes, water column chlorophyll a and the appearance of pelagic phytoplankton at the sediment. Measurements of chlorophyll and chlorophyll degradation products indicated phytoplankton material was heavily degraded after it reached the sediment surface: the nature of the chlorophyll degradation products (predominantly pheophorbide, pyropheophorbide and hydroxychlorophyllone) was indicative of grazing activity. The abundance of bacterial 16S rRNA genes g−1 sediment (used as a proxy for bacterial biomass) increased markedly with the onset of the phytoplankton bloom, and correlated with measurements of chlorophyll at the surface sediment. Together, this suggests that bacteria may have responded to nutrients released via grazing activity. In depth sequencing of the 16S rRNA genes indicated that the composition of the bacterial community shifted rapidly through-out the prolonged spring bloom period. This was primarily due to an increase in the relative sequence abundance of Flavobacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the years, many reviews of different aspects of diatom biology, ecology and evolution have appeared. Since 1993 many molecular trees have been produced to infer diatom phylogeny. In 2004, Medlin & Kaczmarska revised the systematics of the diatoms based on more than 20 years of consistent recovery of two major clades of diatoms that did not correspond to a traditional concept of centrics and pennates and established three classes of diatoms: Clade 1 = Coscinodiscophyceae (radial centrics) and Clade 2 = Mediophyceae (polar centrics + radial Thalassiosirales) and Bacillariophyceae (pennates). However, under certain analytical conditions, an alternative view of diatom evolution, a grades of clades, has been recovered that suggests a gradual evolution from centric to pennate symmetry. These two schemes of diatom evolution are evaluated in terms of whether or not the criteria advocated by Medlin & Kaczmarska that should be met to recover monophyletic classes have been used. The monophyly of the three diatom classes can only be achieved if (1) a secondary structure of the small subunit (SSU) rRNA gene was used to construct the alignment and not an alignment based on primary structure and (2) multiple outgroups were used. These requirements have not been met in each study of diatom evolution; hence, the grade of clades, which is useful in reconstructing the sequence of evolution, is not useful for accepting the new classification of the diatoms. Evidence for how these two factors affect the recovery of the three monophyletic classes is reviewed here. The three classes have been defined by clear morphological differences primarily based on gametangia and auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. New evidence supporting the three clades is reviewed. Other features of the cell are examined to determine whether they can also be used to support the monophyly of the three classes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the years, many reviews of different aspects of diatom biology, ecology and evolution have appeared. Since 1993 many molecular trees have been produced to infer diatom phylogeny. In 2004, Medlin & Kaczmarska revised the systematics of the diatoms based on more than 20 years of consistent recovery of two major clades of diatoms that did not correspond to a traditional concept of centrics and pennates and established three classes of diatoms: Clade 1 = Coscinodiscophyceae (radial centrics) and Clade 2 = Mediophyceae (polar centrics + radial Thalassiosirales) and Bacillariophyceae (pennates). However, under certain analytical conditions, an alternative view of diatom evolution, a grades of clades, has been recovered that suggests a gradual evolution from centric to pennate symmetry. These two schemes of diatom evolution are evaluated in terms of whether or not the criteria advocated by Medlin & Kaczmarska that should be met to recover monophyletic classes have been used. The monophyly of the three diatom classes can only be achieved if (1) a secondary structure of the small subunit (SSU) rRNA gene was used to construct the alignment and not an alignment based on primary structure and (2) multiple outgroups were used. These requirements have not been met in each study of diatom evolution; hence, the grade of clades, which is useful in reconstructing the sequence of evolution, is not useful for accepting the new classification of the diatoms. Evidence for how these two factors affect the recovery of the three monophyletic classes is reviewed here. The three classes have been defined by clear morphological differences primarily based on gametangia and auxospore ontogeny and envelope structure, the presence or absence of a structure (tube process or sternum) associated with the annulus and the location of the cribrum in those genera with loculate areolae. New evidence supporting the three clades is reviewed. Other features of the cell are examined to determine whether they can also be used to support the monophyly of the three classes.