5 resultados para 10-HZ REPETITION RATE
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Fast Repetition Rate fluorometry (FRRf) measurements of phytoplankton photophysiology from an across-basin South Atlantic cruise (as part of the GEOTRACES programme) characterised two dominant ecophysiological regimes which were interpreted on the basis of nutrient limitation. South of the South Subtropical Convergence (SSTC) in the northern sub-Antarctic sector of the Antarctic Circumpolar Current (ACC) in the Eastern Atlantic Basin, waters are characterised by elevated chlorophyll concentrations, a dominance by larger phytoplankton cells, and low apparent photochemical efficiency (F-v/F-m). Shipboard 24 h iron (Fe) addition incubation experiments confirmed that Fe stress was primarily responsible for the low F-v/F-m, with Fe addition to these waters, either within the artificial bottle additions or naturally occurring downstream enrichment from Gough Island, significantly increasing F-v/F-m values. To the north of the SSTC at the southern boundary of the South Atlantic Gyre, phytoplankton are characterised by high values of F-v/F-m which, coupled with the low macronutrient concentrations and increased presence of picocyanobacteria, are interpreted as conditions of Fe replete, balanced macronutrient-limited growth. Spatial correlation was found between F-v/F-m and Fe: nitrate ratios, supporting the suggestion that the relative supply ratios of these two nutrients can control patterns of limitation and consequently the ecophysiology of phytoplankton in subtropical gyre and ACC regimes.
Resumo:
This study presents a methods evaluation and intercalibration of active fluorescence-based measurements of the quantum yield ( inline image) and absorption coefficient ( inline image) of photosystem II (PSII) photochemistry. Measurements of inline image, inline image, and irradiance (E) can be scaled to derive photosynthetic electron transport rates ( inline image), the process that fuels phytoplankton carbon fixation and growth. Bio-optical estimates of inline image and inline image were evaluated using 10 phytoplankton cultures across different pigment groups with varying bio-optical absorption characteristics on six different fast-repetition rate fluorometers that span two different manufacturers and four different models. Culture measurements of inline image and the effective absorption cross section of PSII photochemistry ( inline image, a constituent of inline image) showed a high degree of correspondence across instruments, although some instrument-specific biases are identified. A range of approaches have been used in the literature to estimate inline image and are evaluated here. With the exception of ex situ inline image estimates from paired inline image and PSII reaction center concentration ( inline image) measurements, the accuracy and precision of in situ inline image methodologies are largely determined by the variance of method-specific coefficients. The accuracy and precision of these coefficients are evaluated, compared to literature data, and discussed within a framework of autonomous inline image measurements. This study supports the application of an instrument-specific calibration coefficient ( inline image) that scales minimum fluorescence in the dark ( inline image) to inline image as both the most accurate in situ measurement of inline image, and the methodology best suited for highly resolved autonomous inline image measurements.