10 resultados para (14)C bomb peak dating

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review current knowledge and understanding of the biology and ecology of the calanoid copepod Calanus helgolandicus in European waters, as well as provide a collaborative synthesis of data from 18 laboratories and 26 sampling stations in areas distributed from the northern North Sea to the Aegean and Levantine Seas. This network of zooplankton time-series stations has enabled us to collect and synthesise seasonal and multi-annual data on abundance, body size, fecundity, hatching success and vertical distribution of C. helgolandicus. An aim was to enable comparison with its congener Calanus finmarchicus, which has been studied intensively as a key component of European and north east Atlantic marine ecosystems. C. finmarchicus is known to over-winter at depth, whereas the life-cycle of C. helgolandicus is less well understood. Overwintering populations of C. helgolandicus have been observed off the Atlantic coast between 400 and 800 m, while in the Mediterranean there is evidence of significant deep-water populations at depths as great as 4200 m. The biogeographical distribution of C. helgolandicus in European coastal waters covers a wide range of habitats, from open ocean to coastal environments, and its contribution to mesozooplankton biomass ranges from 6% to 93%. Highest abundances were recorded in the Adriatic and off the west coast of Spain. C. helgolandicus is generally found in 9-20 C water, with maximum abundances from 13-17 C. In contrast, C. finmarchicus is found in cooler water between 0 and 15 C, with peak abundances from 0 to 9 C. As water has warmed in the North Atlantic over recent decades, the range of C. helgolandicus and its abundance on the fringes of its expanding range have increased. This review will facilitate development of population models of C. helgolandicus. This will not only help answer remaining questions but will improve our ability to forecast future changes, in response to a warming climate, in the abundance and distribution of this important species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simulated in situ incubation box has been compared with in situ exposure for 14C production measurements in an estuarine environment. Measurements were made over the course of 14 months, mainly in the Tamar estuary; production rates ranged from less than 1 mg C m−2h−1 to 350 mg C m−2h−1 and there was no significant difference between results from the two methods. In the estuarine waters investigated, the simulated in situ incubator with neutral density filters, used with a Secchi disc to determine sampling depths, gives a satisfactory estimate of in situ primary production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nematodes from a mud-flat in the river Lynher estuary, Cornwall, U.K., have a population density ranging between 8 and 9 × 106 m−2 in the winter months, corresponding to a dry weight of 1·4 and 1·6 g m−2. They reach a peak abundance of 22·86 × 106 m−2 (3·4 g) in May. About 40 species are present, and the species composition remained seasonally stable over the period of study. Analysis of age-structure suggests that the major species have continuous asynchronous reproduction. Respiration rates of 16 species have been determined at 20 °C using Cartesian diver respirometry. For five species, respiration/body size regressions were obtained in the form log10R = log10a+b log10V, where R = respiration in nl O2 ind−1 h−1 and V = body volume in nl: Mesotheristus setosus (log10a = −0·04,b = 0·74), Sphaerolaimus hirsutus (log10a = 0·11, b = 0·68), Axonolaimus paraspinosus (log10a = 0·00, b = 0·79), Metachromadora vivipara (log10a = −0·59, b = 1·07), Praeacanthonchus punctatus (log10a = 0·00, b = 0·55). For the remaining 11 species, several animals were used in each diver and, by assuming b = 0·75, log10a′ values were calculated: Viscosia viscosa (log10a′ = 0·188), Innocuonema tentabundum (−0·012), Ptycholaimellus ponticus (−0·081), Odontophora setosa (−0·092), Sphaerolaimus balticus (−0·112), Dichromadora cephalata (−0·133), Atrochromadora microlaima (−0·142), Cylindrotheristus normandicus (−0·150), Terschellingialongicaudata (−0·170), Sabatieria pulchra (−0·197), Terschellingia communis (−0·277). These values are compared with recalculated values for other species from the literature. Annual respiration of the nematode community is 28·01 O2 m−2, equivalent to 11·2 g carbon metabolised. Community respiration is compared with figures from N. American saltmarshes. At 20 °C, a respiration of about 61 O2 m−2 year−1 g−1 wet weight of nematodes appears to be typical. Annual production is estimated to be 6·6 g C m−2. The correlation between feeding-group, body-size, habitat and the repiration rate of individual species is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absorption and fluorescence properties of chlorosomes of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001 were analyzed. The chlorosome antenna of Chloronema consists of bacteriochlorophyll (BChl) d and BChl c together with γ-carotene as the main carotenoid. HPLC analysis combined with APCI LC-MS/MS showed that the chlorosomal BChls comprise a highly diverse array of homologues that differ in both the degree of alkylation of the macrocycle at C-8 and/or C-12 and the alcohol moiety esterified to the propionic acid group at C-17. BChl c and BChl d from Chloronema were mainly esterified with geranylgeraniol (33% of the total), heptadecanol (24%), octadecenol (19%), octadecanol (14%), and hexadecenol (9%). Despite this pigment heterogeneity, fluorescence emission of the chlorosomes showed a single peak centered at 765 nm upon excitation at wavelengths ranging from 710 to 740 nm. This single emission, assigned to BChl c, indicates an energy transfer from BChl d to BChl c within the same chlorosome. Likewise, incubation of chlorosomes under reducing conditions caused a weak increase in fluorescence emission, which indicates a small redox-dependent fluorescence. Finally, protein analysis of Chloronema chlorosomes using SDS-PAGE and MALDI-TOF-MS revealed the presence of a chlorosomal polypeptide with a molecular mass of 5.7 kDa, resembling the CsmA protein found in Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes. Several minor polypeptides were also detected but not identified. These results indicate that, compared with other members of filamentous anoxygenic phototrophic bacteria and green sulfur bacteria, Chloronema possesses an antenna system with novel features that may be of interest for further investigations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two key players in the Arctic and subarctic marine ecosystem are the calanoid copepods, Calanus finmarchicus and C. glacialis. Although morphologically very similar, these sibling species have different life cycles and roles in the Arctic pelagic marine ecosystem. Considering that the distribution of C. glacialis corresponds to Arctic water masses and C. finmarchicus to Atlantic water masses, the species are frequently used as climate indicators. Consequently, correct identification of the two species is essential if we want to understand climate-impacted changes on Calanus-dominated marine ecosystems such as the Arctic. Here, we present a novel morphological character (redness) to distinguish live females of C. glacialis and C. finmarchicus and compare it to morphological (prosome length) and genetic identification. The characters are tested on 300 live females of C. glacialis and C. finmarchicus from Disko Bay, western Greenland. Our analysis confirms that length cannot be used as a stand-alone criterion for separation. The results based on the new morphological character were verified genetically using a single mitochondrial marker (16S) and nuclear loci (six microsatellites and 12 InDels). The pigmentation criterion was also used on individuals (n = 89) from Young Sound fjord, northeast Greenland to determine whether the technique was viable in different geographical locations. Genetic markers based on mitochondrial and nuclear loci were corroborative in their identification of individuals and revealed no hybrids. Molecular identification confirmed that live females of the two species from Greenlandic waters, both East and West, can easily be separated by the red pigmentation of the antenna and somites of C. glacialis in contrast to the pale opaque antenna and somites of C. finmarchicus, confirming that the pigmentation criterion is valid for separation of the two species

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most satellite models of production have been designed and calibrated for use in the open ocean. Coastal waters are optically more complex, and the use of chlorophyll a (chl a) as a first-order predictor of primary production may lead to substantial errors due to significant quantities of coloured dissolved organic matter (CDOM) and total suspended material (TSM) within the first optical depth. We demonstrate the use of phytoplankton absorption as a proxy to estimate primary production in the coastal waters of the North Sea and Western English Channel for both total, micro- and nano+pico-phytoplankton production. The method is implemented to extrapolate the absorption coefficient of phytoplankton and production at the sea surface to depth to give integrated fields of total and micro- and nano+pico-phytoplankton primary production using the peak in absorption coefficient at red wavelengths. The model is accurate to 8% in the Western English Channel and 22% in this region and the North Sea. By comparison, the accuracy of similar chl a based production models was >250%. The applicability of the method to autonomous optical sensors and remotely sensed aircraft data in both coastal and estuarine environments is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075–1333 μatm) were 34 % lower than at ambient CO2 (350 μatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L−1 increasing to 4.3 ± 0.4 pmol L−1 and 87.4 ± 14.9 pmol L−1 increasing to 134.4 ± 24.1 pmol L−1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-ɑ concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L−1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L−1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L−1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L−1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L−1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 μatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).