148 resultados para Radioactive tracers in oceanography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The patterns of copepod species richness (S) and their relationship with phytoplankton productivity, temperature and environmental stability were investigated at climatological, seasonal and year-to-year time scales as well as scales along latitudinal and oceanic–neritic gradients using monthly time series of the Continuous Plankton Recorder (CPR) Survey collected in the North East Atlantic between 1958 and 2006. Time series analyses confirmed previously described geographic patterns. Equatorward and towards neritic environments, the climatological average of S increases and the variance explained by the seasonal cycle decreases. The bi-modal character of seasonality increases equatorward and the timing of the seasonal cycle takes place progressive earlier equatorward and towards neritic environments. In the long-term, the climatological average of S decreased significantly (p < 0.001) between 1958 and 2006 in the Bay of Biscay and North Iberian shelf at a rate of ca. 0.04 year−1, and increased at the same rate between 1991 and 2006 in the northernmost oceanic location. The climatological averages of S correlate positively with those of the index of seasonality of phytoplankton productivity (ratio between the minimum and maximum monthly values of surface chlorophyll) and sea surface temperature, and negatively with those of the proxy for environmental stability (monthly frequency of occurrence of daily averaged wind speed exceeding 10 m s−1). The seasonal cycles of S and phytoplankton productivity (surface chlorophyll as proxy) exhibit similar features in terms of shape, timing and explained variance, but the relationship between the climatological averages of both variables is non-significant. From year-to-year, the annual averages of S correlate negatively with those of phytoplankton productivity and positively with those of sea surface temperature along the latitudinal gradient, and negatively with those of environmental stability along the oceanic–neritic gradient. The annual anomalies of S (i.e. factoring out geographic variation) show a unimodal relationship with those of sea surface temperature and environmental stability, with S peaking at intermediate values of the anomalies of these variables. The results evidence the role of seasonality of phytoplankton productivity on the control of copepod species richness at seasonal and climatological scales, giving support to the species richness–productivity hypothesis. Although sea surface temperature (SST) is indeed a good predictor of richness along the latitudinal gradient, it is unable to predict the increase of richness form oceanic to neritic environments, thus lessening the generality of the species richness–energy hypothesis. Meteo-hydrographic disturbances (i.e. SST and wind speed anomalies as proxies), presumably through its role on mixed layer depth dynamics and turbulence and hence productivity, maximise local diversity when occurring at intermediate frequency and or intensity, thus providing support to the intermediate disturbance hypothesis on the control of copepod diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Top predators, particularly seabirds, have repeatedly been suggested as indicators of marine ecosystem status. One region currently under pressure from human fisheries and climate change is the North Sea. Standardized seabird monitoring data have been collected on the Isle of May, an important seabird colony in the northwestern North Sea, over the last 10–20 years. Over this period oceanographic conditions have varied markedly, and between 1990 and 1999 a major industrial fishery for sandlance (Ammodytes marinus), the main prey of most seabird species, was prosecuted nearby. Sandlance fishing grounds close to seabird colonies down the east coast of the UK were closed in 2000 in an attempt to improve foraging opportunities for breeding seabirds, particularly black-legged kittiwakes (Rissa tridactyla). Initially this closure seemed to be beneficial for kittiwakes with breeding success recovering to pre-fishery levels. However, despite the ban continuing, kittiwakes and many other seabird species in the North Sea suffered severe breeding failures in 2004. In this paper, we test the predictive power of four previously established correlations between kittiwake breeding success and climatic/trophic variables to explain the observed breeding success at the Isle of May in 2004. During the breeding season, kittiwakes at this colony switch from feeding on 1+ group to 0 group sandlance, and results up until 2003 indicated that availability of both age classes had a positive effect on kittiwake breeding success. The low breeding success of kittiwakes in 2004 was consistent with the late appearance and small body size of 0 group sandlance, but at odds with the two variables likely to operate via 1 group availability (lagged winter sea surface temperature and larval sandlance cohort strength in 2003). The reason for the discrepancy is currently unknown, but analysis of 1 group sandlance body composition indicated that lipid content in 2004 was extremely low, and thus fish eaten by kittiwakes during pre-breeding and early incubation were likely to be of poor quality. Monitoring of reproductive success of kittiwakes, although useful, was clearly not sufficient to tease apart the complex causation underlying the 2004 event. Monitoring programs such as this, therefore, need to be complemented by detailed research to identify the mechanisms involved, and to attribute and predict the effects of natural and human-induced environmental change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of a quasi-stationary anticyclonic eddy within the southeastern Bay of Biscay (centred around 44°30′N-4°W) has been reported on various occasions in the bibliography. The analysis made in this study for the period 2003–2010, by using in situ and remote sensing measurements and model results shows that this mesoscale coherent structure is present almost every year from the end of winter-beginning of spring, to the beginning of fall. During this period it remains in an area limited to the east by the Landes Plateau, to the west by Le Danois Bank and Torrelavega canyon and to the northwest by the Jovellanos seamount. All the observations and analysis made in this contribution, suggest that this structure is generated between Capbreton and Torrelavega canyons. Detailed monitoring from in situ and remote sensing data of an anticyclonic quasi-stationary eddy, in 2008, shows the origin of this structure from a warm water current located around 43°42′N-3°30′W in mid-January. This coherent structure is monitored until August around the same area, where it has a marked influence on the Sea Level Anomaly, Sea Surface Temperature and surface Chlorophyll-a concentration. An eddy tracking method, applied to the outputs of a numerical model, shows that the model is able to reproduce this type of eddy, with similar 2D characteristics and lifetimes to that suggested by the observations and previous works. This is the case, for instance, of the simulated MAY04 eddy, which was generated in May 2004 around Torrelavega canyon and remained quasi-stationary in the area for 4 months. The diameter of this eddy ranged from 40 to 60 km, its azimuthal velocity was less than 20 cm s−1, its vertical extension reached 3000–3500 m depth during April and May and it was observed to interact with other coherent structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-water corals are associated with high local biodiversity, but despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has decreased from 8.2 to ~8.1, and predicted CO2 emissions will decrease by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Here, we present the first short-term (21 days) data on the effects of increased CO2 (750 ppm) upon the metabolism of freshly collected L. pertusa from Mingulay Reef Complex, Scotland, for comparison with net calcification. Over 21 days, corals exposed to increased CO2 conditions had significantly lower respiration rates (11.4±1.39 SE, µmol O2 g−1 tissue dry weight h−1) than corals in control conditions (28.6±7.30 SE µmol O2 g−1 tissue dry weight h−1). There was no corresponding change in calcification rates between treatments, measured using the alkalinity anomaly technique and 14C uptake. The decrease in respiration rate and maintenance of calcification rate indicates an energetic imbalance, likely facilitated by utilisation of lipid reserves. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A global dataset of in situ particulate absorption spectra has been decomposed into component functions representing absorption by phytoplankton pigments and non-algal particles. The magnitudes of component Gaussian functions, used to represent absorption by individual or groups of pigments, are well correlated with pigment concentrations determined using High Performance Liquid Chromatography. We are able to predict the presence of chlorophylls a,ba,b, and cc, as well as two different groups of summed carotenoid pigments with percent errors between 30% and 57%. Existing methods of analysis of particulate absorption spectra measured in situ provide for only chlorophyll aa; the method presented here, using high spectral resolution particulate absorption, shows the ability to obtain the concentrations of additional pigments, allowing for more detailed studies of phytoplankton ecology than currently possible with in-situ spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of a quasi-stationary anticyclonic eddy within the southeastern Bay of Biscay (centred around 44°30′N-4°W) has been reported on various occasions in the bibliography. The analysis made in this study for the period 2003–2010, by using in situ and remote sensing measurements and model results shows that this mesoscale coherent structure is present almost every year from the end of winter-beginning of spring, to the beginning of fall. During this period it remains in an area limited to the east by the Landes Plateau, to the west by Le Danois Bank and Torrelavega canyon and to the northwest by the Jovellanos seamount. All the observations and analysis made in this contribution, suggest that this structure is generated between Capbreton and Torrelavega canyons. Detailed monitoring from in situ and remote sensing data of an anticyclonic quasi-stationary eddy, in 2008, shows the origin of this structure from a warm water current located around 43°42′N-3°30′W in mid-January. This coherent structure is monitored until August around the same area, where it has a marked influence on the Sea Level Anomaly, Sea Surface Temperature and surface Chlorophyll-a concentration. An eddy tracking method, applied to the outputs of a numerical model, shows that the model is able to reproduce this type of eddy, with similar 2D characteristics and lifetimes to that suggested by the observations and previous works. This is the case, for instance, of the simulated MAY04 eddy, which was generated in May 2004 around Torrelavega canyon and remained quasi-stationary in the area for 4 months. The diameter of this eddy ranged from 40 to 60 km, its azimuthal velocity was less than 20 cm s−1, its vertical extension reached 3000–3500 m depth during April and May and it was observed to interact with other coherent structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlorophyll-a satellite products are routinely used in oceanography, providing a synoptic and global view of phytoplankton abundance. However, these products lack information on the community structure of the phytoplankton, which is crucial for ecological modelling and ecosystem studies. To assess the usefulness of existing methods to differentiate phytoplankton functional types (PFT) or phytoplankton size classes from satellite data, in-situ phytoplankton samples collected in the Western Iberian coast, on the North-East Atlantic, were analysed for pigments and absorption spectra. Water samples were collected in five different locations, four of which were located near the shore and another in an open-ocean, seamount region. Three different modelling approaches for deriving phytoplankton size classes were applied to the in situ data. Approaches tested provide phytoplankton size class information based on the input of pigments data (Brewin et al., 2010), absorption spectra data (Ciotti et al., 2002) or both (Uitz et al., 2008). Following Uitz et al. (2008), results revealed high variability in microphytoplankton chlorophyll-specific absorption coefficients, ranging from 0.01 to 0.09 m2 (mg chl)− 1 between 400 and 500 nm. This spectral analysis suggested, in one of the regions, the existence of small cells (< 20 μm) in the fraction of phytoplankton presumed to be microphytoplankton (based on diagnostic pigments). Ciotti et al. (2002) approach yielded the highest differences between modelled and measured absorption spectra for the locations where samples had high variability in community structure and cell size. The Brewin et al. (2010) pigment-based model was adjusted and a set of model coefficients are presented and recommended for future studies in offshore water of the Western Iberian coast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from the euphotic zone. Numerical models provide a vital tool to explore these interactions, given their capability to investigate multiple connected components of the system and the sensitivity to multiple drivers, including potential future conditions. A major driver for ecosystem model development is the demand for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider the state of the art in simulating oceans and shelf sea physics, planktonic and higher trophic level ecosystems, and look towards building an integrative approach with these existing tools. We note how the different approaches have evolved historically and that many of the previous obstacles to harmonisation may no longer be present. We illustrate this with examples from the on-going and planned modelling effort in the Integrative Modelling Work Package of the EURO-BASIN programme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disentangling the roles of environmental change and natural environmental variability on biologically mediated ecosystem processes is paramount to predict future marine ecosystem functioning. Bioturbation, the biogenic mixing of sediments, has a regulating role in marine biogeochemical processes. However, our understanding of bioturbation as a community level process and of its environmental drivers is still limited by loose use of terminology, and a lack of consensus about what bioturbation is. To help resolve these challenges, this empirical study investigated the links between four different attributes of bioturbation (bioturbation depth, activity and distance, and biodiffusive transport); the ability of an index of bioturbation (BPc) to predict each of them; and their relation to seasonality, in a shallow coastal system – the Western Channel Observatory, UK. Bioturbation distance depended on changes in benthic community structure, while the other three attributes were more directly influenced by seasonality in food availability. In parallel, BPc successfully predicted bioturbation distance but not the other attributes of bioturbation. This study therefore highlights that community bioturbation results from this combination of processes responding to environmental variability at different time-scales. However, community level measurements of bioturbation across environmental variability are still scarce, and BPc is calculated using commonly available data on benthic community structure and the functional classification of invertebrates. Therefore, BPc could be used to support the growth of landscape scale bioturbation research, but future uses of the index need to consider which bioturbation attributes the index actually predicts. As BPc predicts bioturbation distance, estimated here using a random-walk model applicable to community settings, studies using either of the metrics should be directly comparable and contribute to a more integrated future for bioturbation research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Broad-scale patterns in the distribution of deep-sea pelagic species and communities are poorly known. An important question is whether biogeographic boundaries identified from surface features are important in the deep mesopelagic and bathypelagic. We present community analyses of discrete-depth samples of mesozooplankton and micronekton to full-ocean depth collected in the area where the Mid-Atlantic Ridge is crossed by the Subpolar Front. The results show that the distributional discontinuity associated with the front, which is strong near the surface, decreases with increasing depth. Both the frontal separation near the surface and the community convergence at increasing depths were clearer for mesozooplankton than for micronekton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nano- and picoplankton community at Station L4 in the Western English Channel was studied between 2007 and 2013 by flow cytometry to quantify abundance and investigate seasonal cycles within these communities. Nanoplankton included both photosynthetic and heterotrophic eukaryotic single-celled organisms while the picoplankton included picoeukaryote phytoplankton, Synechococcus sp. cyanobacteria and heterotrophic bacteria. A Box–Jenkins Transfer Function climatology analysis of surface data revealed that Synechococcus sp., cryptophytes, and heterotrophic flagellates had bimodal annual cycles. Nanoeukaryotes and both high and low nucleic acid-containing bacteria (HNA and LNA, respectively) groups exhibited unimodal annual cycles. Phaeocystis sp., whilst having clearly defined abundance maxima in spring was not detectable the rest of the year. Coccolithophores exhibited a weak seasonal cycle, with abundance peaks in spring and autumn. Picoeukaryotes did not exhibit a discernable seasonal cycle at the surface. Timings of maximum group abundance varied through the year. Phaeocystis sp. and heterotrophic flagellates peaked in April/May. Nanoeukaryotes and HNA bacteria peaked in June/July and had relatively high abundance throughout the summer. Synechococcus sp., cryptophytes and LNA bacteria all peaked from mid to late September. The transfer function model techniques used represent a useful means of identifying repeating annual cycles in time series data with the added ability to detect trends and harmonic terms at different time scales from months to decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naturally occurring red tides and harmful algal blooms (HABs) are of increasing importance in the coastal environment and can have dramatic effects on coastal benthic and epipelagic communities worldwide. Such blooms are often unpredictable, irregular or of short duration, and thus determining the underlying driving factors is problematic. The dinoflagellate Karenia mikimotoi is an HAB, commonly found in the western English Channel and thought to be responsible for occasional mass finfish and benthic mortalities. We analysed a 19-year coastal time series of phytoplankton biomass to examine the seasonality and interannual variability of K. mikimotoi in the western English Channel and determine both the primary environmental drivers of these blooms as well as the effects on phytoplankton productivity and oxygen conditions. We observed high variability in timing and magnitude of K. mikimotoi blooms, with abundances reaching >1000 cells mL�1 at 10 m depth, inducing up to a 12-fold increase in the phytoplankton carbon content of the water column. No long-term trends in the timing or magnitude of K. mikimotoi abundance were evident from the data. Key driving factors were identified as persistent summertime rainfall and the resultant input of low-salinity high-nutrient river water. The largest bloom in 2009 was associated with highest annual primary production and led to considerable oxygen depletion at depth, most likely as a result of enhanced biological breakdown of bloom material; however, this oxygen depletion may not affect zooplankton. Our data suggests that K. mikimotoi blooms are not only a key and consistent feature of western English Channel productivity, but importantly can potentially be predicted from knowledge of rainfall or river discharge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary productivity and subsequent carbon cycling in the coastal zone have a significant impact on the global carbon budget. It is currently unclear how anthropogenic activity could alter these budgets but long term coastal time series of hydrological, biogeochemical and biological measurements represent a key means to better understand past drivers, and hence to predicting future seasonal and inter-annual variability in carbon fixation in coastal ecosystems. An 8-year time series of primary production from 2003 to 2010, estimated using a recently developed absorption-based algorithm, was used to determine the nature and extent of change in primary production at a coastal station (L4) in the Western English Channel (WEC). Analysis of the seasonal and inter-annual variability in production demonstrated that on average, nano- and pico-phytoplankton account for 48% of the total carbon fixation and micro-phytoplankton for 52%. A recent decline in the primary production of nano- and pico-phytoplankton from 2005 to 2010 was observed, corresponding with a decrease in winter nutrient concentrations and a decrease in the biomass of Phaeocystis sp. Micro-phytoplankton primary production (PPM) remained relatively constant over the time series and was enhanced in summer during periods of high precipitation. Increases in sea surface temperature, and decreases in wind speeds and salinity were associated with later spring maxima in PPM. Together these trends indicate that predicted increases in temperature and decrease in wind speeds in future would drive later spring production whilst predicted increases in precipitation would also continue these blooms throughout the summer at this site.