155 resultados para CLIMATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Northern Hemisphere has been warmer since 1980 than at any other time during the last 2000 years. The observed increase in temperature has been generally higher in northern than in southern European seas, and higher in enclosed than in open seas. Although European marine ecosystems are influenced by many other factors, such as nutrient enrichment and overfishing, every region has shown at least some changes that were most likely attributable to recent climate change. It is expected that within open systems there will generally be (further) northward movement of species, leading to a switch from polar to more temperate species in the northern seas such as the Arctic, Barents Sea and the Nordic Seas, and subtropical species moving northward to temperate regions such as the Iberian upwelling margin. For seas that are highly influenced by river runoff, such as the Baltic Sea, an increase in freshwater due to enhanced rainfall will lead to a shift from marine to more brackish and even freshwater species. If semi-enclosed systems such as the Mediterranean and the Black Sea lose their endemic species, the associated niches will probably be filled by species originating from adjacent waters and, possibly, with species transported from one region to another via ballast water and the Suez Canal. A better understanding of potential climate change impacts (scenarios) at both regional and local levels, the development of improved methods to quantify the uncertainty of climate change projections, the construction of usable climate change indicators, and an improvement of the interface between science and policy formulation in terms of risk assessment will be essential to formulate and inform better adaptive strategies to address the inevitable consequences of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Continuous Plankton Recorder (CPR) dataset on fish larvae has an extensive spatio-temporal coverage that allows the responses of fish populations to past changes in climate variability, including abrupt changes such as regime shifts, to be investigated. The newly available dataset offers a unique opportunity to investigate long-term changes over decadal scales in the abundance and distribution of fish larvae in relation to physical and biological factors. A principal component analysis (PCA) using 7 biotic and abiotic parameters is applied to investigate the impact of environmental changes in the North Sea on 5 selected taxa of fish larvae during the period 1960 to 2004. The analysis revealed 4 periods of time (1960–1976; 1977–1982; 1983–1996; 1997–2004) reflecting 3 different ecosystem states. The larvae of clupeids, sandeels, dab and gadoids seemed to be affected mainly by changes in the plankton ecosystem, while the larvae of migratory species such as Atlantic mackerel responded more to hydrographic changes. Climate variability seems more likely to influence fish populations through bottom-up control via a cascading effect from changes in the North Atlantic Oscillation (NAO) impacting on the hydro dynamic features of the North Sea, in turn impacting on the plankton available as prey for fish larvae. The responses and adaptability of fish larvae to changing environmental conditions, parti cularly to changes in prey availability, are complex and species-specific. This complexity is enhanced with fishing effects interacting with climate effects and this study supports furthering our under - standing of such interactions before attempting to predict how fish populations respond to climate variability

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate effects have been shown to be at least partly responsible for the reorganisation in the plankton ecosystem on the shelf seas of NW Europe over the last 50 years. Most fish larvae feed primarily on zooplankton, so changes in zooplankton quantity, quality and seasonal timing have been hypothesized to be a key factor affecting their survival. To investigate this we have implemented a 1-dimensional trophodynamic growth model of cod larvae for the waters around the UK covering the period 1960 to 2003. Larval growth is modelled as the difference between the amount of food absorbed by the larva and its various metabolic costs. Prey availability is based upon the biomass and size of available preys (i.e. adults and nauplii copepods and cladocerans) taken from the Continuous Plankton Recorder dataset. Temperature and wind forcing are also taken into account. Results suggest that observed changes in plankton community structure may have had less impact than previously suggested. This is because changes in prey availability may be compensated for by increased temperatures resulting in little overall impact on potential larval growth. Stock recovery, at least in the short term is likely to be more dependent upon conserving the year classes recruited to allow spawning stock biomass to rebuild. If as our model suggests, the larvae are still able to survive in the changing environment, reduction in fishing on the adults is needed to allow the stock to recover.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea‐level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up ∼40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean ‘carbon pumps’ (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice–ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the physical and chemical principles that explain the warming of the Earth’s system resulting from emissions of CO2 and other greenhouse gases were understood at the end of the 19th century (Tyndall, 1861; Arrhenius, 1896) and at the beginning of the 20th century (Callendar, 1938), it was almost 100 years later, in the mid‐1980s, before it was realized that these processes were contributing to a rapid change in climate. The potential consequences of this global warming have still to be revealed and are difficult to anticipate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview is provided of the observed and potential future responses of zooplankton communities to global warming. I begin by describing the importance of zooplankton in ocean ecosystems and the attributes that make them sensitive beacons of climate change. Global warming may have even greater repercussions for marine ecosystems than for terrestrial ecosystems, because temperature influences water column stability, nutrient enrichment, and the degree of new production, and thus the abundance, size composition, diversity, and trophic efficiency of zooplankton. Pertinent descriptions of physical changes in the ocean in response to climate change are given as a prelude to a detailed discussion of observed impacts of global warming on zooplankton. These manifest as changes in the distribution of individual species and assemblages, in the timing of important life-cycle events, and in abundance and community structure. The most illustrative case studies, where climate has had an obvious, tangible impact on zooplankton and substantial ecosystem consequences, are presented. Changes in the distribution and phenology of zooplankton are faster and greater than those observed for terrestrial groups. Relevant projected changes in ocean conditions are then presented, followed by an exploration of potential future changes in zooplankton communities from the perspective of different modelling approaches. Researchers have used a range of modelling approaches on individual species and functional groups forced by output from climate models under future greenhouse gas emission scenarios. I conclude by suggesting some potential future directions in climate change research for zooplankton, viz. the use of richer zooplankton functional groups in ecosystem models; greater research effort in tropical systems; investigating climate change in conjunction with other human impacts; and a global zooplankton observing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change and variability may have an impact on the occurrence of food safety hazards at various stages of the food chain, from primary production through to consumption. There are multiple pathways through which climate related factors may impact food safety including: changes in temperature and precipitation patterns, increased frequency and intensity of extreme weather events, ocean warming and acidification, and changes in contaminants’ transport pathways among others. Climate change may also affect socio-economic aspects related to food systems such as agriculture, animal production, global trade, demographics and human behaviour which all influence food safety. This paper reviews the potential impacts of predicted changes in climate on food contamination and food safety at various stages of the food chain and identifies adaptation strategies and research priorities to address food safety implications of climate change. The paper concludes that there is a need for intersectoral and international cooperation to better understand the changing food safety situation and in developing and implementing adaptation strategies to address emerging risks associated with climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comment by Votier et al. (2008) on our recently published article (Wynn et al. 2007) contains two main criticisms: (i) that our analytical approach is inappropriate and (ii) that we have failed to acknowledge other factors that may have contributed to the change in Balearic Shearwater numbers recorded throughout northwest European waters. We strongly disagree with both these criticisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimethylsulphide (DMS) is a globally important aerosol precurser. In 1987 Charlson and others proposed that an increase in DMS production by certain phytoplankton species in response to a warming climate could stimulate increased aerosol formation, increasing the lower-atmosphere's albedo, and promoting cooling. Despite two decades of research, the global significance of this negative climate feedback remains contentious. It is therefore imperative that schemes are developed and tested, which allow for the realistic incorporation of phytoplankton DMS production into Earth System models. Using these models we can investigate the DMS-climate feedback and reduce uncertainty surrounding projections of future climate. Here we examine two empirical DMS parameterisations within the context of an Earth System model and find them to perform marginally better than the standard DMS climatology at predicting observations from an independent global dataset. We then question whether parameterisations based on our present understanding of DMS production by phytoplankton, and simple enough to incorporate into global climate models, can be shown to enhance the future predictive capacity of those models. This is an important question to ask now, as results from increasingly complex Earth System models lead us into the 5th assessment of climate science by the Intergovernmental Panel on Climate Change. Comparing observed and predicted inter-annual variability, we suggest that future climate projections may underestimate the magnitude of surface ocean DMS change. Unfortunately this conclusion relies on a relatively small dataset, in which observed inter-annual variability may be exaggerated by biases in sample collection. We therefore encourage the observational community to make repeat measurements of sea-surface DMS concentrations an important focus, and highlight areas of apparent high inter-annual variability where sampling might be carried out. Finally, we assess future projections from two similarly valid empirical DMS schemes, and demonstrate contrasting results. We therefore conclude that the use of empirical DMS parameterisations within simulations of future climate should be undertaken only with careful appreciation of the caveats discussed.