107 resultados para HSJ CPR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Going Global: planning the next 80 years of the Continuous Plankton Recorder Survey. Operated by the Sir Alister Hardy Foundation for Ocean Science (SAHFOS), the Continuous Plankton Recorder (CPR) survey is the world’s largest, sampling 4 ocean basins, and longest running (since 1931) plankton biodiversity monitoring programme. Having sampled enough miles to circumnavigate the globe over 200 times, the CPR database houses over 2.5 million entries, describing the distribution of 500 phytoplankton and zooplankton taxa. Routinely sampling in the Arctic, Atlantic, Pacific and Southern Oceans, the survey analyses 4000 samples yearly. Data collected from these samples are made freely available for bona fide scientific purposes. The CPR survey data is used to generate a better understanding of changes in the plankton and to date some 1000 papers have been published on plankton biodiversity. This year sees the 80th anniversary of the CPR survey and to celebrate and build upon this unique monitoring programme, SAHFOS intends to further develop its global plankton perspective. Work will be extended into the South Atlantic and Indian Ocean and an international partnership with complementary surveys in Australia, Canada, America, Japan and South Africa will be implemented. The Digital Object will describe the CPR survey using compilations made by Plymouth Art College and BBC film footage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).