110 resultados para Estuarine oceanography.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine environments are greatly affected by climate change, and understanding how this perturbation affects marine vertebrates is a major issue. In this context, it is essential to identify the environmental drivers of animal distribution. Here, we focused on the little auk (Alle alle), one of the world’s most numerous seabirds and a major component in Arctic food webs. Using a multidisciplinary approach, we show how little auks adopt specific migratory strategies and balance environmental constraints to optimize their energy budgets. Miniature electronic loggers indicate that after breeding, birds from East Greenland migrate .2000 km to overwinter in a restricted area off Newfoundland. Synoptic data available from the Continuous Plankton Recorder (CPR) indicate that this region harbours some of the highest densities of the copepod Calanus finmarchicus found in the North Atlantic during winter. Examination of large-scale climatic and oceanographic data suggests that little auks favour patches of high copepod abundance in areas where air temperature ranges from 0uC to 5uC. These results greatly advance our understanding of animal responses to extreme environmental constraints, and highlight that information on habitat preference is key to identifying critical areas for marine conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most satellite models of production have been designed and calibrated for use in the open ocean. Coastal waters are optically more complex, and the use of chlorophyll a (chl a) as a first-order predictor of primary production may lead to substantial errors due to significant quantities of coloured dissolved organic matter (CDOM) and total suspended material (TSM) within the first optical depth. We demonstrate the use of phytoplankton absorption as a proxy to estimate primary production in the coastal waters of the North Sea and Western English Channel for both total, micro- and nano+pico-phytoplankton production. The method is implemented to extrapolate the absorption coefficient of phytoplankton and production at the sea surface to depth to give integrated fields of total and micro- and nano+pico-phytoplankton primary production using the peak in absorption coefficient at red wavelengths. The model is accurate to 8% in the Western English Channel and 22% in this region and the North Sea. By comparison, the accuracy of similar chl a based production models was >250%. The applicability of the method to autonomous optical sensors and remotely sensed aircraft data in both coastal and estuarine environments is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extensive literature base worldwide demonstrates how spatial differences in estuarine fish assemblages are related to those in the environment at (bio)regional, estuary-wide or local (within-estuary) scales. Few studies, however, have examined all three scales, and those including more than one have often focused at the level of individual environmental variables rather than scales as a whole. This study has identified those spatial scales of environmental differences, across regional, estuary-wide and local levels, that are most important in structuring ichthyofaunal composition throughout south-western Australian estuaries. It is the first to adopt this approach for temperate microtidal waters. To achieve this, we have employed a novel approach to the BIOENV routine in PRIMER v6 and a modified global BEST test in an alpha version of PRIMER v7. A combination of all three scales best matched the pattern of ichthyofaunal differences across the study area (rho = 0.59; P = 0.001), with estuary-wide and regional scales accounting for about twice the variability of local scales. A shade plot analysis showed these broader-scale ichthyofaunal differences were driven by a greater diversity of marine and estuarine species in the permanently-open west coast estuaries and higher numbers of several small estuarine species in the periodically-open south coast estuaries. When interaction effects were explored, strong but contrasting influences of local environmental scales were revealed within each region and estuary type. A quantitative decision tree for predicting the fish fauna at any nearshore estuarine site in south-western Australia has also been produced. The estuarine management implications of the above findings are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arctic Ocean is, on average, the shallowest of Earth’s oceans. Its vast continental shelf areas, which account for approximately half of the Arctic Ocean’s total area, are heavily influenced by the surrounding land masses through river run-off and coastal erosion. As a main area of deep water formation, the Arctic is one of the main «engines» of global ocean circulation, due to large freshwater inputs, it is also strongly stratified. The Arctic Ocean’s complex oceanographic configuration is tightly linked to the atmosphere, the land, and the cryosphere. The physical dynamics not only drive important climate and global circulation patterns, but also control biogeochemical cycles and ecosystem dynamics. Current changes in Arctic sea-ice thickness and distribution, air and water temperatures, and water column stability are resulting in measurable shifts in the properties and functioning of the ocean and its ecosystems. The Arctic Ocean is forecast to shift to a seasonally ice-free ocean resulting in changes to physical, chemical, and biological processes. These include the exchange of gases across the atmosphere-ocean interface, the wind-driven ciruclation and mixing regimes, light and nutrient availability for primary production, food web dynamics, and export of material to the deep ocean. In anticipation of these changes, extending our knowledge of the present Arctic oceanography and these complex changes has never been more urgent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some results of the Bay of Biscay regional oceanography presented at ISOBAY are summarized including contributions to physical oceanography, chemical and biological oceanography, marine geology, deep water ecology, marine pollution, fisheries research and cetacean studies. A long-term analysis of the spring bloom of phytoplankton in the area during the last 17 years (1997–2014) is presented as an example of Bay of Biscay climate research. The Spring Bloom presents cycles of 4–6 years reflecting probably the availability of nutrients from the previous winter and has increased in peak intensity during the last decades.