115 resultados para Distribution of plants
Resumo:
The spawning stock of blue whiting (Micromesistius poutassou), an economically important pelagic gadoid in the North Atlantic Ocean, increased threefold after 1995. The reproductive success of the stock is largely determined during the very early stages of life, but little is known about the spawning dynamics of this species. Here we show that the spawning distribution of blue whiting is variable, regulated by the hydrography west of the British Isles. When the North Atlantic subpolar gyre is strong and spreads its cold, fresh water masses east over Rockall Plateau, the spawning is constrained along the European continental slope and in a southerly position near Porcupine Bank. When the gyre is weak and conditions are relatively saline and warm, the spawning distribution moves northwards along the slope and especially westwards covering Rockall Plateau. The apparent link between the spawning distribution and the subpolar gyre is the first step towards understanding the reproduction variability, which currently is the main challenge for appropriate management of the blue whiting stock.
Long-term changes in abundance and distribution of microzooplankton in the NE Atlantic and North Sea
Resumo:
Long-term changes in mesozooplankton and phytoplankton populations have been well documented in the North Atlantic region, whereas data for microzooplankton are scarce. This neglected component of the plankton is a vital link in marine food-webs, grazing on smaller flagellates and cyanobacteria and in turn providing food for the larger mesozooplankton. We use the latest tintinnid (Ciliophora, Protista) data from the Continuous Plankton Recorder (CPR) survey in the NE Atlantic and North Sea to examine the phenology, distribution and abundance of this important group of ciliates. Presence/absence data came from 167 122 CPR samples collected between 1960 and 2009 and abundance data from 49 662 samples collected between 1996 and 2009. In the North Atlantic the genus Dictyocysta spp. dominated and Parafavella gigantea showed an increase in abundance around Iceland and Greenland. In the North Sea higher densities of Tintinnopsis spp., Favella serrata and Ptychocylis spp. were found. The presence of tintinnids in CPR samples collected in the North Atlantic has increased over the last 50 years and the seasonal window of high abundance has lengthened. Conversely in the North Sea there has been an overall reduction in abundance. We discuss possible drivers for these long-term changes and point the way forward to more holistic studies that examine how ecosystems, rather than just selected taxa, are responding to climate change.
Resumo:
Mesozooplankton biomass and abundance were evaluated in epipelagic waters at 59 stations covering the Italian sector of the Ligurian Sea (north-western Mediterranean) in December 1990. This region is characterised by a cyclonic circulation which encloses a central divergence zone and is associated with a main thermohaline front offshore the western Ligurian coast. At the end of autumn, mesozooplankton biomass (range: 0.80–4.24 mg DW m−3) and the abundance (range: 83.8–932 ind. m−3) were lower in the divergence zone. On the contrary, in the Ligurian frontal zone at the periphery of the divergence and on the eastern continental shelf the greatest values of biomass and abundance were recorded. Copepods and appendicularians dominated the mesozooplankton community, the main taxa being the copepods Clausocalanus spp. (46% of total zooplankton) and Oithona spp. (15%) and the appendicularian Fritillaria spp. (12%). Three hydrological sub-regions, i.e. the divergence, the eastern continental shelf and the periphery of the divergence, were characterised by different zooplankton communities and characteristic species. Environmental differences between the three zones were mainly related to changes in bottom topography, sea surface temperatures and quantity of particulate organic matter. Vertical mesozooplankton abundance and taxa distribution from the surface to 1,900 m depth were also examined in one station. The results showed that the bulk of the community was concentrated in the upper 200 m, small copepods being dominant particularly in the upper 50 m. The copepod community was more diversified in sub-superficial waters, with a maximum observed in the 200–400 m layer. The distributions of main zooplankton taxa described in epipelagic waters in the eastern Ligurian Sea in autumn were compared with their distribution at surface in the north-western Mediterranean obtained by sampling performed with the Continuous Plankton Recorder in 1997–1999. The analysis of the zooplankton community in CPR samples confirms the dominance of small copepods (Paracalanus spp., Clausocalanus spp., Oithona spp.) and appendicularians in the north-western Mediterranean in late autumn-winter and shows that their distribution is mainly related to the main mesoscale hydrographic features characterising this basin.
Resumo:
We study the spatial and seasonal variability of phytoplankton biomass (as phytoplankton color) in relation to the environmental conditions in the North Sea using data from the Continuous Plankton Recorder survey. By using only environmental fields and location as predictor variables we developed a nonparametric model (generalized additive model) to empirically explore how key environmental factors modulate the spatio-temporal patterns of the seasonal cycle of algal biomass as well as how these relate to the ,1988 North Sea regime shift. Solar radiation, as manifest through changes of sea surface temperature (SST), was a key factor not only in the seasonal cycle but also as a driver of the shift. The pronounced increase in SST and in wind speed after the 1980s resulted in an extension of the season favorable for phytoplankton growth. Nutrients appeared to be unimportant as explanatory variables for the observed spatio-temporal pattern, implying that they were not generally limiting factors. Under the new climatic regime the carrying capacity of the whole system has been increased and the southern North Sea, where the environmental changes have been more pronounced, reached a new maximum.
Resumo:
The Healthy and Biologically Diverse Seas Evidence Group (HBDSEG) has been tasked with providing the technical advice for the implementation of the Marine Strategy Framework Directive (MSFD) with respect to descriptors linked to biodiversity. A workshop was held in London to address one of the Research and Development (R&D) proposals entitled: ‘Mapping the extent and distribution of habitats using acoustic and remote techniques, relevant to indicators for area/extent/habitat loss.’ The aim of the workshop was to identify, define and assess the feasibility of potential indicators of benthic habitat distribution and extent, and identify the R&D work which could be required to fully develop these indicators. The main points that came out of the workshop were: (i) There are many technical aspects of marine habitat mapping that still need to be resolved if cost-effective spatial indicators are to be developed. Many of the technical aspects that need addressing surround issues of consistency, confidence and repeatability. These areas should be tackled by the JNCC Habitat Mapping and Classification Working Group and the HBDSEG Seabed Mapping Working Group. (ii) There is a need for benthic ecologists (through the HBDSEG Benthic Habitats Subgroup and the JNCC Marine Indicators Group) to finalise the list of habitats for which extent and/or distribution indicators should be considered for development, building upon the recommendations from this report. When reviewing the list of indicators, benthic habitats could also be distinguished into those habitats that are defined/determined primarily by physical parameters (although including biological assemblages) (e.g. subtidal shallow sand) and those defined primarily by their biological assemblage (e.g. seagrass beds). This distinction is important as some anthropogenic pressures may influence the biological component of the ecosystem despite not having a quantifiable effect on the physical habitat distribution/extent. (iii) The scale and variety of UK benthic habitats makes any attempt to undertake comprehensive direct mapping exercises prohibitively expensive (especially where there is a need for repeat surveys for assessment). There is a clear need therefore to develop a risk-based approach that uses indirect indicators (e.g. modelling), such as habitats at risk from pressures caused by current human activities, to develop priorities for information gathering. The next steps that came out of the workshop were: (i) A combined approach should be developed by the JNCC Marine Indicators Group together with the HBDSEG Benthic Habitats Subgroup, which will compile and ultimately synthesise all the criteria used by the three different groups from the workshop. The agreed combined approach will be used to undertake a final review of the habitats considered during the workshop, and to evaluate any remaining habitats in order to produce a list of habitats for indicator development for which extent and/or distribution indicators could be appropriate. (ii) The points of advice raised at this workshop, alongside the combined approach aforementioned, and the final list of habitats for extent and/or distribution indicator development will be used to develop a prioritised list of actions to inform the next round of R&D proposals for benthic habitat indicator development in 2014. This will be done through technical discussions within JNCC and the relevant HBDSEG Subgroups. The preparation of recommendations by these groups should take into account existing work programmes, and consider the limited resources available to undertake any further R&D work.
Resumo:
The distribution of cirripede cyprids in relation to associated oceanographic conditions was obtained from a grid survey and intensive vertical sampling at a fixed station located 21 km off the northwest Portuguese coast in May 2002. Analysis of cyprid length composition allowed separation of 3 species groups. Chthamalus montagui, Pollicipes pollicipes and Balanus perforatus were largely restricted to the neuston layer and showed only low-amplitude vertical migration. Most C. stellatus cyprids only appeared in the upper 20 m at night, a migration which did not appear to be affected by physical conditions in the water column, but some differences in the vertical migration pattern between days were probably related to varying light penetration. C. montagui is the most abundant adult species found along the Portuguese coast, but C. stellatus cyprids, at densities of up to 8.7 ind. m–3, were the most common sampled in all depth strata at the fixed station. Cyprid horizontal distribution was mainly restricted to an offshore band along the inner shelf, where highest densities were 11 to 15 ind. m–3. This distribution pattern was considered to result from upwelling-favourable wind conditions, creating fronts along the shelf in which the cyprids become concentrated. Cyprid vertical migration, in association with current vertical shear and onshore movement of fronts during upwelling-relaxation periods, may be the mechanisms returning cyprids to the coast to settle. The regularity of these events in the region falls within the period of cyprid viability.
Resumo:
Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.
Resumo:
The degree to which advection modulates the distribution of plankton populations at a 1-D coastal observatory was assessed at station L4 in the western English Channel (50°15′N 4°13′W, depth 50 m), part of the Western Channel Observatory (WCO). Five tidal-cycle surveys were conducted, three in spring and two in summer 2010. Observations of the physical characteristics of L4 were obtained by using a moored acoustic doppler current profiler (ADCP) and a free-falling microstructure sensor (MSS). The moored ADCP highlighted the presence of vertical shear, with typical values of U during spring tides of ∼0.5 m s−1 at the surface and ∼0.2 m s−1 at the bed. The distribution of phyto- and zooplankton populations above a size threshold of 200 μm were examined using an in-line holographic imaging system, the Holocam. Variability in time as well as depth is a common feature throughout each of the surveys, with examples of recorded numbers of phytoplankton that ranged between 1300 L−1 and 2300 L−1 at the same depth but at different points within the tidal cycle. Further, at the same points in the tidal cycle the number of recorded zooplankton was also seen to vary, specifically with the identification of gelatinous planula in spring that increased the observed number to maximums of between 140 L−1 and 220 L−1 in the upper layer, considerably higher that the corresponding WP-2 net counts for a similar period. Specific aspects of the movement and transfer of plankton relating to advection and interaction with the pycnocline are identified, both across tidal cycles and seasons.
Resumo:
Lasaea rubra is an inbreeding bivalve species, living at most heights on rocky shores. Freshly collected animals from different shore heights showed significantly different upper median lethal temperatures (MLTs), with upper shore animals having higher MLTs than lower shore specimens. Experiments with animals acclimated for at least one month to a single temperature (15°C) demonstrated that these differences in upper MLT were unaffected by thermal acclimation. Electrophoretic investigation showed that the differences in thermal response had a genetic basis. Homogeneous populations of the high-water inbred line (‘Inbred line A’) had a higher MLT than homogeneous populations of ‘Inbred line C’ which was found on the middle and lower shore. No differences were detected between the MLTs of separate populations of Inbred lines A or C. A third inbred line (‘Inbred line B’) was found on the middle shore, but no homogeneous populations were found. However, indirect evidence suggests that Inbred line B has a thermal response intermediate between those of Inbred lines A and C. Study of populations made up of mixtures of inbred lines confirmed the relationship between upper MLTs and genetic composition of the population.