111 resultados para UK 14304
Resumo:
Climate effects have been shown to be at least partly responsible for the reorganisation in the plankton ecosystem on the shelf seas of NW Europe over the last 50 years. Most fish larvae feed primarily on zooplankton, so changes in zooplankton quantity, quality and seasonal timing have been hypothesized to be a key factor affecting their survival. To investigate this we have implemented a 1-dimensional trophodynamic growth model of cod larvae for the waters around the UK covering the period 1960 to 2003. Larval growth is modelled as the difference between the amount of food absorbed by the larva and its various metabolic costs. Prey availability is based upon the biomass and size of available preys (i.e. adults and nauplii copepods and cladocerans) taken from the Continuous Plankton Recorder dataset. Temperature and wind forcing are also taken into account. Results suggest that observed changes in plankton community structure may have had less impact than previously suggested. This is because changes in prey availability may be compensated for by increased temperatures resulting in little overall impact on potential larval growth. Stock recovery, at least in the short term is likely to be more dependent upon conserving the year classes recruited to allow spawning stock biomass to rebuild. If as our model suggests, the larvae are still able to survive in the changing environment, reduction in fishing on the adults is needed to allow the stock to recover.
Resumo:
A regime shift is a large, sudden, and long-lasting change in the dynamics of an ecosystem, affecting multiple trophic levels. There are a growing number of papers that report regime shifts in marine ecosystems. However, the evidence for regime shifts is equivocal, because the methods used to detect them are not yet well developed. We have collated over 300 biological time series from seven marine regions around the UK, covering the ecosystem from phytoplankton to marine mammals. Each time series consists of annual measures of abundance for a single group of organisms over several decades. We summarised the data for each region using the first principal component, weighting either each time series or each biological component (e.g. plankton, fish, benthos) equally. We then searched for regime shifts using Rodionov’s regime shift detection (RSD) method, which found regime shifts in the first principal component for all seven marine regions. However, there are consistent temporal trends in the data for six of the seven regions. Such trends violate the assumptions of RSD. Thus, the regime shifts detected by RSD in six of the seven regions are likely to be artefacts caused by temporal trends. We are therefore developing more appropriate time series models for both single populations and whole communities that will explicitly model temporal trends and should increase our ability to detect true regime shift events.
Resumo:
The report provides a review of the current level of exchange in marine life data and its management in the UK taking into account the current structures that are in place between data providers, custodians and managers. In addition, the report makes recommendations on how data flow can be improved over the next few years to achieve greater exchange and interoperability within the marine sector.
Resumo:
Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately 500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity.
The co-location of offshore windfarms and decapod fisheries in the UK: Constraints and opportunities
Resumo:
The offshore wind sector in the UK is expanding rapidly and is set to occupy significant areas of the coastal zone, making it necessary to explore the potential for co-location with other economic activities. The presence of turbine foundations introduces hard substrates into areas previously dominated by soft sediments, implying that artificial reef effects may occur, with potential benefits for fisheries. This review focuses on the possibilities for locating fisheries for two commercially important decapods, the brown crab Cancer pagurus and the European lobster Homarus gammarus, within offshore wind farms. Existing understanding of habitat use by C pagurus and H. gammarus suggests that turbine foundations have the potential to act as artificial reefs, although the responses of these species to noise and electromagnetic fields are poorly understood. Offshore wind farm monitoring programmes provide very limited information, but do suggest that adult C pagurus associate with turbine foundations, which may also serve as nursery areas. There was insufficient deployment and monitoring of rock armouring to draw conclusions about the association of H. gammarus with offshore wind farm foundations. The limited information currently available demonstrates the need for further research into the ecological and socioeconomic issues surrounding fishery co-location potential.
Resumo:
Macroalgae (seaweeds) are a promising feedstock for the production of third generation bioethanol, since they have high carbohydrate contents, contain little or no lignin and are available in abundance. However, seaweeds typically contain a more diverse array of monomeric sugars than are commonly present in feedstocks derived from lignocellulosic material which are currently used for bioethanol production. Hence, identification of a suitable fermentative microorganism that can utilise the principal sugars released from the hydrolysis of macroalgae remains a major objective. The present study used a phenotypic microarray technique to screen 24 different yeast strains for their ability to metabolise individual monosaccharides commonly found in seaweeds, as well as hydrolysates following an acid pre-treatment of five native UK seaweed species (Laminaria digitata, Fucus serratus, Chondrus crispus, Palmaria palmata and Ulva lactuca). Five strains of yeast (three Saccharomyces spp, one Pichia sp and one Candida sp) were selected and subsequently evaluated for bioethanol production during fermentation of the hydrolysates. Four out of the five selected strains converted these monomeric sugars into bioethanol, with the highest ethanol yield (13 g L−1) resulting from a fermentation using C. crispus hydrolysate with Saccharomyces cerevisiae YPS128. This study demonstrated the novel application of a phenotypic microarray technique to screen for yeast capable of metabolising sugars present in seaweed hydrolysates; however, metabolic activity did not always imply fermentative production of ethanol.
Resumo:
Marine and coastal policy in the UK has faced a number of significant changes in recent years, most notably the passing of the Marine and Coastal Access Act in 2009. These changes have brought significant challenges and opportunities for all those involved in the management and use of the UK's marine and coastal environment. This new era of marine policy inspired the UK's first Marine and Coastal Policy forum held in June 2011. In this introductory paper the global context of marine policy changes and the themes which emerged from the forum, forming the basis of the articles in this special issue, are outlined. It is concluded that there is a high level of engagement, capacity and willingness of key stakeholders to work collaboratively to address the environmental, social and economic complexities of managing the marine and coastal environment. It is both evident and encouraging that progress is being made and the many challenges faced in this new era give rise to a number of opportunities to develop new ideas and effective mechanisms for finding solutions
Resumo:
We performed an annual study of oxygenated volatile organic compound (OVOC) seawater concentrations at a site off Plymouth, UK in the Western English Channel over the period of February 2011–March 2012. Acetone concentrations ranged from 2–10 nM (nanomole/L) in surface waters with a maximum observed in summer. Concentrations correlated positively with net shortwave radiation and UV light, suggestive of photochemically linked acetone production. We observed a clear decline in acetone concentrations below the mixed layer. Acetaldehyde varied between 4–37 nM in surface waters with higher values observed in autumn and winter. Surface concentrations of methanol ranged from 16–78 nM, but no clear annual cycle was observed. Methanol concentrations exhibited considerable inter-annual variability. We estimate consistent deposition to the sea surface for acetone and methanol but that the direction of the acetaldehyde flux varies during the year.
Resumo:
Marine and coastal policy in the UK has faced a number of significant changes in recent years, most notably the passing of the Marine and Coastal Access Act in 2009. These changes have brought significant challenges and opportunities for all those involved in the management and use of the UK's marine and coastal environment. This new era of marine policy inspired the UK's first Marine and Coastal Policy forum held in June 2011. In this introductory paper the global context of marine policy changes and the themes which emerged from the forum, forming the basis of the articles in this special issue, are outlined. It is concluded that there is a high level of engagement, capacity and willingness of key stakeholders to work collaboratively to address the environmental, social and economic complexities of managing the marine and coastal environment. It is both evident and encouraging that progress is being made and the many challenges faced in this new era give rise to a number of opportunities to develop new ideas and effective mechanisms for finding solutions.
Resumo:
The ascidian Corella eumyota, originally from the Southern Hemisphere, was first reported in the Northern Hemisphere in Brittany, France, in 2002. Since then, it has been recorded in Spain, Ireland, the south coast of England and South Wales. Most European records to date have been from artificial habitats such as marinas. In Plymouth, England, C. eumyota was first found in two marinas in 2005 but individuals were soon also detected in small numbers on nearby shores. Shore surveys in March and August of 2008 indicated that C. eumyota has established reproductive populations on natural and semi-natural shores of Plymouth Sound and the adjacent coastline, largely restricted to relatively sheltered sites in the lower reaches of estuaries. At these sites it is generally the most abundant non-colonial ascidian. The species clearly has the capacity to become a significant component of the biota of sheltered shores in the Northern Hemisphere.
Resumo:
The first presentation focused on best practice in marine environments and was delivered by the MBA, in association with PEGASEAS. Information was presented about the significance of joint working across the Channel and a number of different projects including The Shore Thing Project were explained.
Resumo:
Trichodesmium, a colonial cyanobacterium typically associated with tropical waters, was observed between January and April 2014 in the western English Channel. Sequencing of the heterocyst differentiation (hetR) and 16S rRNA genes placed this community within the Clade IV Trichodesmium, an understudied clade previously found only in low numbers in warmer waters. Nitrogen fixation was not detected although measurable rates of nitrate uptake and carbon fixation were observed. Trichodesmium RuBisCO transcript abundance relative to gene abundance suggests the potential for viable and potentially active Trichodesmium carbon fixation. Observations of Trichodesmium when coupled with a numerical advection model indicate that Trichodesmium communities can remain viable for >3.5 months at temperatures lower than previously expected. The results suggest that Clade IV Trichodesmium occupies a different niche to other Trichodesmium species, and is a cold- or low-light-adapted variant.