111 resultados para Sea cucumber ecology
Resumo:
Vitamin traffic, the production of organic growth factors by some microbial community members and their use by other taxa, is being scrutinized as a potential explanation for the variation and highly connected behavior observed in ocean plankton by community network analysis. Thiamin (vitamin B1), a cofactor in many essential biochemical reactions that modify carbon-carbon bonds of organic compounds, is distributed in complex patterns at subpicomolar concentrations in the marine surface layer (0-300 m). Sequenced genomes from organisms belonging to the abundant and ubiquitous SAR11 clade of marine chemoheterotrophic bacteria contain genes coding for a complete thiamin biosynthetic pathway, except for thiC, encoding the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) synthase, which is required for de novo synthesis of thiamin's pyrimidine moiety. Here we demonstrate that the SAR11 isolate 'Candidatus Pelagibacter ubique', strain HTCC1062, is auxotrophic for the thiamin precursor HMP, and cannot use exogenous thiamin for growth. In culture, strain HTCC1062 required 0.7 zeptomoles per cell (ca. 400 HMP molecules per cell). Measurements of dissolved HMP in the Sargasso Sea surface layer showed that HMP ranged from undetectable (detection limit: 2.4 pM) to 35.7 pM, with maximum concentrations coincident with the deep chlorophyll maximum. In culture, some marine cyanobacteria, microalgae and bacteria exuded HMP, and in the Western Sargasso Sea, HMP profiles changed between the morning and evening, suggesting a dynamic biological flux from producers to consumers.
Resumo:
The assimilation and regeneration of dissolved inorganic nitrogen, and the concentration of N2O, was investigated at stations located in the NW European shelf sea during June/July 2011. These observational measurements within the photic zone demonstrated the simultaneous regeneration and assimilation of NH4+, NO2− and NO3−. NH4+ was assimilated at 1.82–49.12 nmol N L−1 h−1 and regenerated at 3.46–14.60 nmol N L−1 h−1; NO2- was assimilated at 0–2.08 nmol N L−1 h−1 and regenerated at 0.01–1.85 nmol N L−1 h−1; NO3− was assimilated at 0.67–18.75 nmol N L−1 h−1 and regenerated at 0.05–28.97 nmol N L−1 h−1. Observations implied that these processes were closely coupled at the regional scale and that nitrogen recycling played an important role in sustaining phytoplankton growth during the summer. The [N2O], measured in water column profiles, was 10.13 ± 1.11 nmol L−1 and did not strongly diverge from atmospheric equilibrium indicating that sampled marine regions were neither a strong source nor sink of N2O to the atmosphere. Multivariate analysis of data describing water column biogeochemistry and its links to N-cycling activity failed to explain the observed variance in rates of N-regeneration and N-assimilation, possibly due to the limited number of process rate observations. In the surface waters of five further stations, ocean acidification (OA) bioassay experiments were conducted to investigate the response of NH4+ oxidising and regenerating organisms to simulated OA conditions, including the implications for [N2O]. Multivariate analysis was undertaken which considered the complete bioassay data set of measured variables describing changes in N-regeneration rate, [N2O] and the biogeochemical composition of seawater. While anticipating biogeochemical differences between locations, we aimed to test the hypothesis that the underlying mechanism through which pelagic N-regeneration responded to simulated OA conditions was independent of location. Our objective was to develop a mechanistic understanding of how NH4+ regeneration, NH4+ oxidation and N2O production responded to OA. Results indicated that N-regeneration process responses to OA treatments were location specific; no mechanistic understanding of how N-regeneration processes respond to OA in the surface ocean of the NW European shelf sea could be developed.
Resumo:
1. The changes in the composition and distribution of the plankton of the southern North Sea have been investigated month by month, from June 1932 to December 1937; the present report deals with the phytoplankton. The survey was carried out by the Continuous Plankton Recorder, towed at a standard depth of 10 metres, by ships on regular steamship lines across the North Sea from Hull towards the Skagerrak, to Bremen and to Rotterdam, and later between London and Esbjerg. 2. The material and methods are described, together with a discussion on the validity of this type of survey and some comparison of its results with those obtained by other methods (pp. 76-86). 3. Particular attention has been paid to Rhizosolenia styliformis (pp. 92- 107), Biddulphia sinensis (pp. 108-115), Phaeocystis (pp. 149-153), and the Dinoflagellates (pp. 134-149); of these the first three are known to be of particular importance in relation to the herring fisheries. More generalised data are available for the principal diatoms other than R. styliformis and B. sinensis (pp. 116-134). 4. The main part of the work is an ecological study of the phytoplankton changes in time and space over the 5½ years. Each year is marked by some distinct variations in the abundance and the times of increase, maximum numbers and decline as recorded in the different forms. These variations in the annual cycles are compared on the different lines by a series of graphs arranged against a time scale of months, a set for each year being placed side by side (Plates I-XXI). More detailed studies by more frequent records were made in the autumns of 1934, 1935, 1936 and 1937 (cf. Figs. 3 and 4). The changes in spatial distribution are shown by a series of monthly maps arranged in a similar manner for each year (Plates XXII-LXIV). These intensive studies of the changes in time and space are also intended to form the basis for correlations with other features in the general ecology of the area (e. g. the zooplankton, hydrology, meteorology and fisheries) to be made in later publications. 5. Whilst each form has shown its own peculiar features, a trend towards a general increase in the phytoplankton as a whole has been observed during the period, although the years 1934 and 1936 have in some respects shown deviations and regressive features, and not all organisms have revealed the same trend. The possible relation of this gradual trend to other events observed in recent years in these and neighbouring waters is discussed (pp. 162-167). 6. The application of these results to the study of patchiness (pp. 154-158), inter-relationships in the plankton (pp. 159-160) and to water movements (pp. 160-162) is briefly discussed.
Resumo:
I. The monthly changes in the distribution and abundance of the Copepoda in the southern North Sea have been investigated from June 1932 to December 1937 by using the Continuous Plankton Recorder. This was towed at a standard depth of 10 metres by ships sailing on regular lines from Hull to Rotterdam, to Bremen and towards the Skagerrak, and later from London to Esbjerg. 2. The methods are described and those limitations which apply more particularly to the Copepoda are discussed (pp. 175 to 186 and 198 to 203). 3. The first part of the report deals with the Copepoda as a whole, i.e. the total population. The difference between the summer and winter distributions is stressed. The variations in numbers from year to year are found to be considerable and it is suggested that they are sufficiently large to be reflected in the success or failure of the broods of those fish which are at some period of their development dependent upon the Copepoda for food. 4. The second part deals with the data concerning the constituent species or groups of allied species ; a list of these is given on p. 197. 5. The group Paracalanus + Pseudocalanus was by far the most abundant and together with the genera Temora and Acartia was found to be responsible for most of the fluctuations in the population (pp. 205 to 208). 6. The distributions, seasonal and spatial, of the other common forms are described, with the exception of that of Oalantts finmarchicus which is to be the subject of a later report. 7. The recorder results are compared with the findings of the International Council survey from 1902 to 1908; some marked disagreements are discussed (pp. 227 to 232). 8. The appearance of the northern forms Oandacia armata and Metridia lucens during the winters of 1932-33, 1933-34 and 1937 are recorded (pp. 222 to 223) 9. A summarised account of the main seasonal changes in the area is given (pp. 232 to 234) and followed by a brief comparison of the 5½ years investigated.
Resumo:
I. The report describes the main monthly changes in the distribution and abundance of the zooplankton, other than Copepoda and young fish (dealt with in separate reports), over the southern part of the North Sea from 1932 to 1937. The work is part of the survey carried out by Continuous Plankton Recorders towed at a depth of 10 metres on regular steamship lines between England and the Continent. 2. The limitations to the sampling method are discussed, and it is shown to be unsuitable for recording Mysidacea and Euphausiacea on account of their marked diurnal variation due presumably to vertical migration; they are omitted from the report. 3. The changing distribution of Sagitta, Limacina, Clione, Lamellibranch larvae, Cladocera, Caprellid Amphipoda, Decapod larvae, Echinoderm larvae and Oikopleura are shown in a series of monthly charts while their seasonal fluctuations are compared in time-chart histograms. 4. The Alima larvae of Squilla are recorded on a few occasions in the regions where the Channel opens into the North Sea. 5. The distributional characteristics of the different forms, i.e. their tendencies to even or " patchy " production, are compared.
On the Front Line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates
Resumo:
1.Identifying priority areas for marine vertebrate conservation is complex because species of conservation concern are highly mobile, inhabit dynamic habitats and are difficult to monitor. 2.Many marine vertebrates are known to associate with oceanographic fronts – physical interfaces at the transition between water masses – for foraging and migration, making them important candidate sites for conservation. Here, we review associations between marine vertebrates and fronts and how they vary with scale, regional oceanography and foraging ecology. 3.Accessibility, spatiotemporal predictability and relative productivity of front-associated foraging habitats are key aspects of their ecological importance. Predictable mesoscale (10s–100s km) regions of persistent frontal activity (‘frontal zones’) are particularly significant. 4.Frontal zones are hotspots of overlap between critical habitat and spatially explicit anthropogenic threats, such as the concentration of fisheries activity. As such, they represent tractable conservation units, in which to target measures for threat mitigation. 5.Front mapping via Earth observation (EO) remote sensing facilitates identification and monitoring of these hotspots of vulnerability. Seasonal or climatological products can locate biophysical hotspots, while near-real-time front mapping augments the suite of tools supporting spatially dynamic ocean management. 6.Synthesis and applications. Frontal zones are ecologically important for mobile marine vertebrates. We surmise that relative accessibility, predictability and productivity are key biophysical characteristics of ecologically significant frontal zones in contrasting oceanographic regions. Persistent frontal zones are potential priority conservation areas for multiple marine vertebrate taxa and are easily identifiable through front mapping via EO remote sensing. These insights are useful for marine spatial planning and marine biodiversity conservation, both within Exclusive Economic Zones and in the open oceans.
Resumo:
Antarctic krill (Euphausia superba) were sampled in contrasting habitats: a seasonally ice-covered deep ocean (Lazarev Sea), ice-free shelves at their northern range (South Georgia) and the Antarctic Peninsula (Bransfield Strait), and shelf and oceanic sites in the Scotia Sea. Across 92 stations, representing a year-round average, the food volume in krill stomachs comprised 71 +/- 29% algae, 17 +/- 21% protozoans, and 12 +/- 25% metazoans. Fatty acid trophic markers showed that copepods were consistently part of krill diet, not a switch food. In open waters, both diatom and copepod consumption increased with phytoplankton abundance. Under sea ice, ingestion of diatoms became rare, whereas feeding on copepods remained constant. During winter, larvae contained high but variable proportions of diatom markers, whereas in postlarvae the role of copepods increased with krill body length. Overwintering differed according to habitat. Krill from South Georgia had lower lipid stores than those from the Bransfield Strait or Lazarev Sea. Feeding effort was much reduced in Lazarev Sea krill, whereas most individuals from the Bransfield Strait and South Georgia contained phytoplankton and seabed detritus in their stomachs. Their retention of essential body reserves indicates that krill experienced most winter hardship in the Lazarev Sea, followed by South Georgia and then Bransfield Strait. This was reflected in the delayed development from juveniles to adults in the Lazarev Sea. Circumpolar comparisons of length frequencies suggest that krill growth conditions are more favorable in the southwest Atlantic than in the Lazarev Sea or off East Antarctica because of longer phytoplankton bloom periods and rewarding access to benthic food.
Resumo:
Since strong regional warming has led to the disintegration of huge parts of the Larsen A and B ice shelves east of the Antarctic Peninsula in 1995 and 2002, meiofaunal communities covered by ice shelves for thousands of years could be investigated for the first time. Based on a dataset of more than 230,000 individuals, meiobenthic higher taxa diversity and composition of Larsen continental shelf stations were compared to those of deep-sea stations in the Western Weddell Sea to see whether the food-limiting conditions in the deep sea and the food-poor shelf regime at times of iceshelf coverage has resulted in similar meiobenthic communities, on the premises that food availability is the main driver of meiobenthic assemblages. We show here that this is indeed the case; in terms of meiobenthic communities, there is greater similarity between the deep sea and the inner Larsen embayments than there is similarity between the deep sea and the former Larsen B iceshelf edge and the open continental shelf. We also show that resemblance to Antarctic deep-sea meiofaunal communities was indeed significantly higher for communities of the innermost Larsen B area than for those from intermediate parts of Larsen A and B. Similarity between communities from intermediate parts and the deep sea was again higher than between those of the ice-edge and the open shelf. Meiofaunal densities were low at the inner parts of Larsen A and B, and comparable to deep-sea densities, again likely owing to the low food supply at both habitats. We suggest that meiobenthic communities have not yet recovered from the food-limiting conditions present at the time of iceshelf coverage. Meiofaunal diversity on the other hand seemed driven by sediment structure, being higher in coarser sediments.
Resumo:
Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability.
Resumo:
The Red Sea is a semi-enclosed tropical marine ecosystem that stretches from the Gulf of Suez and Gulf of Aqaba in the north, to the Gulf of Aden in the south. Despite its ecological and economic importance, its biological environment is relatively unexplored. Satellite ocean-colour estimates of chlorophyll concentration (an index of phytoplankton biomass) offer an observational platform to monitor the health of the Red Sea. However, little is known about the optical properties of the region. In this paper, we investigate the optical properties of the Red Sea in the context of satellite ocean-colour estimates of chlorophyll concentration. Making use of a new merged ocean-colour product, from the European Space Agency (ESA) Climate Change Initiative, and in situ data in the region, we test the performance of a series of ocean-colour chlorophyll algorithms. We find that standard algorithms systematically overestimate chlorophyll when compared with the in situ data. To investigate this bias we develop an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll algorithms and the overestimation in chlorophyll originally observed was corrected. Results suggest that the overestimation was likely due to an excess of CDOM absorption per unit chlorophyll in the Red Sea when compared with average global conditions. However, we recognise that additional information is required to test the influence of other potential sources of the overestimation, such as aeolian dust, and we discuss uncertainties in the datasets used. We present a series of regional chlorophyll algorithms for the Red Sea, designed for a suite of ocean-colour sensors, that may be used for further testing.
Resumo:
In the near future, the oceans will be subjected to a massive development of marine infrastructures, including offshore wind, tidal and wave energy farms and constructions for marine aquaculture. The development of these facilities will unavoidably exert environmental pressures on marine ecosystems. It is therefore crucial that the economic costs, the use of marine space and the environmental impacts of these activities remain within acceptable limits. Moreover, the installation of arrays of wave energy devices is still far from being economically feasible due to many combined aspects, such as immature technologies for energy conversion, local energy storage and moorings. Therefore, multi-purpose solutions combining renewable energy from the sea (wind, wave, tide), aquaculture and transportation facilities can be considered as a challenging, yet advantageous, way to boost blue growth. This would be due to the sharing of the costs of installation and using the produced energy locally to feed the different functionalities and optimizing marine spatial planning. This paper focuses on the synergies that may be produced by a multi-purpose offshore installation in a relatively calm sea, i.e., the Northern Adriatic Sea, Italy, and specifically offshore Venice. It analyzes the combination of aquaculture, energy production from wind and waves, and energy storage or transfer. Alternative solutions are evaluated based on specific criteria, including the maturity of the technology, the environmental impact, the induced risks and the costs. Based on expert judgment, the alternatives are ranked and a preliminary layout of the selected multi-purpose installation for the case study is proposed, to further allow the exploitation of the synergies among different functionalities.
Resumo:
We introduce a trait-based description of diatom functional diversity to an existing plankton functional type (PFT) model, implemented for the eutrophied coastal ecosystem in the Southern Bight of the North Sea. The trait-based description represents a continuum of diatom species, each characterized by a distinct cell volume, and includes size dependence of four diatom traits: the maximum growth rate, the half-saturation constants for nutrient uptake, the photosynthetic efficiency, and the relative affinity of copepods for diatoms. Through competition under seasonally varying forcing, the fitness of each diatom varies throughout time, and the outcome of competition results in a changing community structure. The predicted seasonal change in mean cell volume of the community is supported by field observations: smaller diatoms, which are more competitive in terms of resource acquisition, prevail during the first spring bloom, whereas the summer bloom is dominated by larger species which better resist grazing. The size-based model is used to determine the ecological niche of diatoms in the area and identifies a range of viable sizes that matches observations. The general trade-off between small, competitive diatoms and large, grazing-resistant species is a convenient framework to study patterns in diatom functional diversity. PFT models and trait-based approaches constitute promising complementary tools to study community structure in marine ecosystems.
Resumo:
Phytoplankton, at the base of the marine food web, represent a fundamental food source in coral reef ecosystems. The timing (phenology) and magnitude of the phytoplankton biomass are major determinants of trophic interactions. The Red Sea is one of the warmest and most saline basins in the world, characterized by an arid tropical climate regulated by the monsoon. These extreme conditions are particularly challenging for marine life. Phytoplankton phenological indices provide objective and quantitative metrics to characterize phytoplank- ton seasonality. The indices i.e. timings of initiation, peak, termination and duration are estimated here using 15 years (1997–2012) of remote sensing ocean-color data from the European Space Agency (ESA) Climate Change Initiative project (OC-CCI) in the entire Red Sea basin. The OC-CCI product, comprising merged and bias-corrected observations from three independent ocean-color sensors (SeaWiFS, MODIS and MERIS), and processed using the POLYMER algorithm (MERIS period), shows a significant increase in chlorophyll data cover- age, especially in the southern Red Sea during the months of summer NW monsoon. In open and reef-bound coastal waters, the performance of OC-CCI chlorophyll data is shown to be comparable with the performance of other standard chlorophyll products for the global oceans. These features have permitted us to investigate phytoplankton phenology in the entire Red Sea basin, and during both winter SE monsoon and summer NW monsoon periods. The phenological indices are estimated in the four open water provinces of the basin, and further examined at six coral reef complexes of particular socio-economic importance in the Red Sea, including Siyal Islands, Sharm El Sheikh, Al Wajh bank, Thuwal reefs, Al Lith reefs and Farasan Islands. Most of the open and deeper waters of the basin show an apparent higher chlorophyll concentration and longer duration of phyto- plankton growth during the winter period (relative to the summer phytoplankton growth period). In contrast, most of the reef-bound coastal waters display equal or higher peak chlorophyll concentrations and equal or lon- ger duration of phytoplankton growth during the summer period (relative to the winter phytoplankton growth period). The ecological and biological significance of the phytoplankton seasonal characteristics are discussed in context of ecosystem state assessment, and particularly to support further understanding of the structure and functioning of coral reef ecosystems in the Red Sea.
Resumo:
Front detection and aggregation techniques were applied to 300m resolution MERIS satellite ocean colour data for the first time, to describe frequently occurring shelf-sea fronts near to the Scottish coast. Medium resolution (1km) thermal and colour data have previously been used to analyse the distribution of surface fronts, though these cannot capture smaller frontal zones or those in close proximity to the coast, particularly where the coastline is convoluted. Seasonal frequent front maps, derived from both chlorophyll and SST data, revealed a number of key frontal zones, a subset of which were based on new insights into the sediment and plankton dynamics provided exclusively by the higher-resolution chlorophyll fronts. The methodology is described for applying colour and thermal front data to the task of identifying zones of ecological importance that could assist the process of defining marine protected areas. Each key frontal zone is analysed to describe its spatial and temporal extent and variability, and possible mechanisms. It is hoped that these tools can provide guidance on the dynamic habitats of marine fauna towards aspects of marine spatial planning and conservation.
Resumo:
We augment discussions about the Good Environmental Status of the North Sea by developing two extreme visions and assessing their societal benefits. One vision (‘Then’) assumes restoration of benthic functioning; we contend that trawling had already degraded the southern North Sea a century ago. Available information is used to speculate about benthic functioning in a relatively undisturbed southern North Sea. The second vision (‘Now’) draws on recent benthic functioning. The supply of five ecosystem services, supported by benthic functioning, is discussed. ‘Then’ offers confidence in the sustainable supply of diverse services but restoration of past function is uncertain and likely to be paired with costs, notably trawling restraints. ‘Now’ delivers known and valued services but sustained delivery is threatened by, for example, climate change. We do not advocate either vision. Our purpose is to stimulate debate about what society wants, and might receive, from the future southern North Sea.